一、安装Tensorflow
建议使用阿里云镜像, 使用pip进行安装tensorflow、tensorflow-gpu:
pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow --trusted-host mirrors.aliyun.com
pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-gpu
二、安装cuda和cudnn
建议安装cuda 10.0版本,官网下载即可,选择自定义安装, NVIDIA GeForce Exprience,CUDA选项下面的Visual Stdio Integration 不用勾选
cudnn下载与cuda版本配套的,下载之后解压,解压之后文件名改为cudnn,并将该文件夹放置于C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0目录下面。然后配置环境变量:
环境变量配置三、测试是否能够使用GPU计算了:
运行下列代码看是否正常:
import tensorflow as tf
import timeit
print(tf.test.is_gpu_available())
with tf.device('/cpu:0'):
cpu_a = tf.random.normal([10000, 1000])
cpu_b = tf.random.normal([1000, 2000])
print(cpu_a.device, cpu_b.device)
with tf.device('/gpu:0'):
gpu_a = tf.random.normal([10000, 1000])
gpu_b = tf.random.normal([1000, 2000])
print(gpu_a.device, gpu_b.device)
def cpu_run():
with tf.device('/cpu:0'):
c = tf.matmul(cpu_a, cpu_b)
return c
def gpu_run():
with tf.device('/gpu:0'):
c = tf.matmul(gpu_a, gpu_b)
return c
# warm up
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('warmup:', cpu_time, gpu_time)
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('run time:', cpu_time, gpu_time)
网友评论