美文网首页数据结构和算法
数据结构和算法之——跳表

数据结构和算法之——跳表

作者: seniusen | 来源:发表于2018-10-29 14:06 被阅读15次

之前我们知道,二分查找依赖数组的随机访问,所以只能用数组来实现。如果数据存储在链表中,就真的没法用二分查找了吗?而实际上,我们只需要对链表稍加改造,就可以实现类似“二分”的查找算法,这种改造之后的数据结构叫作跳表(Skip List)

1. 何为跳表?

对于一个单链表,即使链表是有序的,如果我们想要在其中查找某个数据,也只能从头到尾遍历链表,这样效率自然就会很低。

假如我们对链表每两个结点提取一个结点到上一级,然后建立一个索引指向原始结点,如下图所示。


这时候,我们要查找某一个数据的时候,就可以先在索引里面查找出一个大的范围,然后再下降到原始链表中精确查找。

比如,我们要查找 16,我们发现 16 位于 13 和 17 之间,这时候,我们就从 13 的地方下降到原始链表,然后再往后查询。原来我们查找 16,需要遍历 10 个结点,现在只需要遍历 7 个结点。

我们发现,加一层索引后,查找一个结点需要遍历的次数减少了,也就是查找效率提高了

那么我们再多加一级索引呢?效果会不会有更大提升?


这一次,我们只需要遍历 6 个结点了。

数据量不大的时候这种方法可能效率提高得还不是很明显,下面看一个包含 64 个结点的例子,这次我们建立了五级索引。

查找 62 的时候原来需要遍历 62 次,现在只需要 11 次即可。针对链表长度比较大的时候,构建索引查找效率的提升就会非常明显

2. 跳表查询的分析?

如果链表中总共有 n 个结点,那么第一级索引就有 \frac{n}{2} 个结点,第二级索引就有 \frac{n}{4} 个结点,以此类推,那么第 k 级索引就有 \frac{n}{2^k} 个结点。如果最高级索引有 2 个结点,那总的索引级数 k = log_2n - 1,如果我们算上原始链表的话,那也就是总共有 log_2n 级。

在第 k 级索引中,假设我们要查找的数据为 x,当我们查找到 y 结点时,发现 y < x < z 时此时我们就要下降到 k-1 级索引继续查找。在第 k-1 级索引中,yz 之间只有三个结点,因此,我们最多只需要查找 3 个结点。以此类推,每一级的索引最多都只需要遍历 3 个结点

而总的级别数为 log_2n,因此查找的时间复杂度就为 3* log_2n = logn。跳表查找的时间复杂度和二分查找一样,但这其实是以空间来换时间的设计思路。

跳表的所有额外索引结点总数为 \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + ... + 4 + 2 = n-2,所以跳表的空间复杂度为 O(n)

但如果我们每三个结点建立一个索引,这时候额外需要的结点总数为 \frac{n}{2},虽然空间复杂度依然为 O(n),但减少了一半的索引节点存储空间。

实际上,在实际开发中,原始链表中存储的可能是很大的对象,而索引结点只需要存储关键值和几个指针,其额外占用的空间可以被忽略掉

3. 跳表高效的动态插入和删除?

在链表中,如果我们知道要插入数据的位置,那么插入的时间复杂度就为 O(1)。在跳表中,查找的时间复杂度为 O(logn),因此,动态插入数据的时间复杂度也就是 O(logn) 了。

从链表中删除结点的时候,如果结点在索引中也有出现,那么我们除了要删除原始链表中的结点,还要删除索引中的。

当我们不停地往跳表中插入数据的时候,如果我们不更新索引,就有可能出现某两个结点之间数据非常多的情况。极端情况下,跳表还会退化为单链表。

因此,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表结点变多了,索引值就相应地增加一些

当我们往跳表中插入数据的时候,我们可以选择同时也将这个数据插入到部分索引层中。而插入到哪些索引层中,则由一个随机函数生成一个随机数字来决定。如果这个数字为 K,那我们就将数据插入到第一级到第 K 级索引中。


4. 为什么 Redis 要用跳表来实现有序集合而不是红黑树?

Redis 中的有序集合支持的核心操作主要有以下几个:

  • 插入一个数据
  • 删除一个数据
  • 查找一个数据
  • 按照区间查找数据
  • 迭代输出有序序列

其中,插入、删除、查找以及迭代输出有序序列这几个操作,红黑树也可以完成,时间复杂度和跳表是一样的。

但是,按照区间查找数据这个操作,红黑树的效率没有跳表高。跳表可以在 O(logn) 时间复杂度定位区间的起点,然后在原始链表中顺序向后查询就可以了,这样非常高效。

此外,相比于红黑树,跳表还具有代码更容易实现、可读性好、不容易出错、更加灵活等优点,因此 Redis 用跳表来实现有序集合。

参考资料-极客时间专栏《数据结构与算法之美》

获取更多精彩,请关注「seniusen」!


相关文章

  • 数据结构和算法之——跳表

    之前我们知道,二分查找依赖数组的随机访问,所以只能用数组来实现。如果数据存储在链表中,就真的没法用二分查找了吗?而...

  • Skip List--跳表(全网最详细的跳表文章没有之一)

    跳表是一种神奇的数据结构,因为几乎所有版本的大学本科教材上都没有跳表这种数据结构,而且神书《算法导论》、《算法第四...

  • 跳表原理

    数据结构和算法之——跳表 之前我们知道,二分查找依赖数组的随机访问,所以只能用数组来实现。如果数据存储在链表中,就...

  • 数据结构 - 跳表skiplist

    更多数据结构内容,请参考:数据结构 - 概要 简介 漫画算法:什么是跳跃表? Redis 为什么用跳表而不用平衡树...

  • skiplist

    跳表同时是平衡树的一种替代的数据结构,但是和红黑树不相同的是,跳表对于树的平衡的实现是基于一种随机化的算法的,这样...

  • 有关跳跃表的干货都在这里

    跳表的数据结构 跳表全称叫做跳跃表,简称跳表。跳表是一个随机化的数据结构,实质就是一种可以进行二分查找的有序链表。...

  • 算法概览

    重点掌握的数据结构与算法:10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树;10...

  • HBase内存管理之MemStore

    基于跳表实现的MemStore基础模型 实现MemStore模型的数据结构是SkipList(跳表),跳表可以实现...

  • 数据结构与算法

    数据结构与算法之美 数据结构与算法之美1--如何学数据结构与算法之美2--复杂度分析(上)数据结构与算法之美3--...

  • 《数据结构与算法之美》01——系统高效地学习数据结构与算法

    20个最常用的、最基础的数据结构与算法。 数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie树...

网友评论

    本文标题:数据结构和算法之——跳表

    本文链接:https://www.haomeiwen.com/subject/szavtqtx.html