美文网首页深度学习
2020 无人驾驶(6)之车道线检测

2020 无人驾驶(6)之车道线检测

作者: zidea | 来源:发表于2020-09-11 20:33 被阅读0次
tesla_001.jpg

甜品

为什么喜欢无人驾驶任务,主要原因无人驾驶任务是机器学习为主的一门前沿领域,在无人驾驶领域中机器学习的各种算法随处可见,其实这么说也不算严谨。而于其他机器学习应用的场景中,机器学习多半是一种辅助或者锦上添花的技术。

分享内容

以后分享主要分几个部分

  • 目标
  • 原理(做任务基本思路)
  • TODO 也就是随后要做的事以及要优化的内容
  • 难点,关于这个任务难点,我们可以一起讨论

车道线检测

在无人驾驶领域每一个任务都是相当复杂,看上去无从下手。那么面对这样极其复杂问题,我们解决问题方式从先尝试简化问题,然后由简入难一步一步尝试来一个一个地解决问题。车道线检测在无人驾驶中应该算是比较简单的任务,依赖计算机视觉一些相关技术,通过读取 camera 传入的图像数据进行分析,识别出车道线位置,我想这个对于 lidar 可能是无能为力。所以今天我们就从最简单任务说起,看看有哪些技术可以帮助我们检出车道线。

我们先把问题简化,所谓简化问题就是用一些条件限制来缩小车道线检测的问题。我们先看数据,也就是输入算法是车辆行驶的图像,输出车道线位置。

更多时候我们如何处理一件比较困难任务,可能有时候我们拿到任务时还没有任何思路,不要着急也不用想太多,我们先开始一步一步地做,从最简单的开始做起,随着做就会有思路,同样一些问题也会暴露出来。我们先找一段视频,这段视频是我从网上一个关于车道线检测项目中拿到的,也参考他的思路来做这件事。好现在就开始做这件事,那么最简单的事就是先读取视频,然后将其显示在屏幕以便于调试。

目标

检测图像中车道线位置,将车道线信息提供路径规划。

思路

  • 图像灰度处理
  • 图像高斯平滑处理
  • canny 边缘检测
  • 区域 Mask
  • 霍夫变换
  • 绘制车道线
import cv2
import numpy as np
import sys

import pygame
from pygame.locals import *

class Display(object):

    def __init__(self,Width,Height):
        pygame.init()
        pygame.display.set_caption('Drive Video')
        self.screen = pygame.display.set_mode((Width,Height),0,32)
    def paint(self,draw):
        self.screen.fill([0,0,0])

        draw = cv2.transpose(draw)
        draw = pygame.surfarray.make_surface(draw)
        self.screen.blit(draw,(0,0))
        pygame.display.update()



if __name__ == "__main__":
    solid_white_right_video_path = "test_videos/solidWhiteRight.mp4"
    cap = cv2.VideoCapture(solid_white_right_video_path)
    Width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    Height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    display = Display(Width,Height)

    while True:
        ret, draw = cap.read()
        draw = cv2.cvtColor(draw,cv2.COLOR_BGR2RGB)
        if ret == False:
            break
        display.paint(draw)
        for event in pygame.event.get():
                if event.type == QUIT:
                    sys.exit()


上面代码我就不多说了,默认您对 python 是有所了解,关于如何使用 opencv 读取图片网上代码示例也很多,大家一看就懂。这里因为我用的是 mac 有时候显示视频图像可能会有些问题,所以我们用 pygame 来显示 opencv 读取图像。这个大家根据自己实际情况而定吧。值得说一句的是 opencv 读取图像是 BGR 格式,要想在 pygame 中正确显示图像就需要将 BGR 转换为 RGB 格式。

车道线区域

现在这个区域是我们根据观测图像绘制出来,


drive_on_road.jpg

<img src="images/drive_on_road.jpg">

颜色选择

def color_select(img,red_threshold=200,green_threshold=200,blue_threshold=200):
    ysize,xsize = img.shape[:2]

    color_select = np.copy(img)

    rgb_threshold = [red_threshold, green_threshold, blue_threshold]

    thresholds = (img[:,:,0] < rgb_threshold[0]) \
            | (img[:,:,1] < rgb_threshold[1]) \
            | (img[:,:,2] < rgb_threshold[2])
    color_select[thresholds] = [0,0,0]

    return color_select

<img src="images/color_select.jpg">


color_select.jpg
draw = color_select(draw)

区域

我们要检测车道线位置相对比较固定,通常出现车的前方,所以我们通过绘制,也就是仅检测我们关心区域。通过创建 mask 来过滤掉那些不关心的区域保留关心区域。

canny 边缘检测

有关边缘检测也是计算机视觉。首先利用梯度变化来检测图像中的边,如何识别图像的梯度变化呢,答案是卷积核。卷积核是就是不连续的像素上找到梯度变化较大位置。我们知道 sobal 核可以很好检测边缘,那么 canny 就是 sobal 核检测上进行优化。

def canny_edge_detect(img):
    gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
    kernel_size = 5
    blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)

    low_threshold = 180
    high_threshold = 240
    edges = cv2.Canny(blur_gray, low_threshold, high_threshold)

    return edges

<img src="images/canny_edge_detect.jpg"/>


canny_edge_detect.jpg

霍夫变换(Hough transform)

霍夫变换是将 x 和 y 坐标系中的线映射表示在霍夫空间的点(m,b)。所以霍夫变换实际上一种由繁到简(类似降维)的操作。当使用 canny 进行边缘检测后图像可以交给霍夫变换进行简单图形(线、圆)等的识别。这里用霍夫变换在 canny 边缘检测结果中寻找直线。

mask = np.zeros_like(edges)

    ignore_mask_color = 255 
    # 获取图片尺寸
    imshape = img.shape
    # 定义 mask 顶点
    vertices = np.array([[(0,imshape[0]),(450, 290), (490, 290), (imshape[1],imshape[0])]], dtype=np.int32)
    # 使用 fillpoly 来绘制 mask
    cv2.fillPoly(mask, vertices, ignore_mask_color)
    masked_edges = cv2.bitwise_and(edges, mask)
    # 定义Hough 变换的参数
    rho = 1 
    theta = np.pi/180
    threshold = 2

    min_line_length = 4 # 组成一条线的最小像素数
    max_line_gap = 5    # 可连接线段之间的最大像素间距
    # 创建一个用于绘制车道线的图片
    line_image = np.copy(img)*0 

    # 对于 canny 边缘检测结果应用 Hough 变换
    # 输出“线”是一个数组,其中包含检测到的线段的端点
    lines = cv2.HoughLinesP(masked_edges, rho, theta, threshold, np.array([]),
                                min_line_length, max_line_gap)

    # 遍历“线”的数组来在 line_image 上绘制
    for line in lines:
        for x1,y1,x2,y2 in line:
            cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)

    color_edges = np.dstack((edges, edges, edges)) 

<img src="images/simple_lane_detector.jpg">

import math
import cv2
import numpy as np

"""
Gray Scale
Gaussian Smoothing
Canny Edge Detection
Region Masking
Hough Transform
Draw Lines [Mark Lane Lines with different Color]
"""

class SimpleLaneLineDetector(object):
    def __init__(self):
        pass

    def detect(self,img):
        # 图像灰度处理
        gray_img = self.grayscale(img)
        print(gray_img)
        #图像高斯平滑处理
        smoothed_img = self.gaussian_blur(img = gray_img, kernel_size = 5)
        #canny 边缘检测
        canny_img = self.canny(img = smoothed_img, low_threshold = 180, high_threshold = 240)
        #区域 Mask
        masked_img = self.region_of_interest(img = canny_img, vertices = self.get_vertices(img))
        #霍夫变换
        houghed_lines = self.hough_lines(img = masked_img, rho = 1, theta = np.pi/180, threshold = 20, min_line_len = 20, max_line_gap = 180)
        # 绘制车道线
        output = self.weighted_img(img = houghed_lines, initial_img = img, alpha=0.8, beta=1., gamma=0.)
        
        return output
    def grayscale(self,img):
        return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

    def canny(self,img, low_threshold, high_threshold):
        return cv2.Canny(img, low_threshold, high_threshold)

    def gaussian_blur(self,img, kernel_size):
        return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)

    def region_of_interest(self,img, vertices):
        mask = np.zeros_like(img)   
    
        if len(img.shape) > 2:
            channel_count = img.shape[2]  
            ignore_mask_color = (255,) * channel_count
        else:
            ignore_mask_color = 255
            
        cv2.fillPoly(mask, vertices, ignore_mask_color)
        
        masked_image = cv2.bitwise_and(img, mask)
        return masked_image
    def draw_lines(self,img, lines, color=[255, 0, 0], thickness=10):
        for line in lines:
            for x1,y1,x2,y2 in line:
                cv2.line(img, (x1, y1), (x2, y2), color, thickness)

    def slope_lines(self,image,lines):
        img = image.copy()
        poly_vertices = []
        order = [0,1,3,2]

        left_lines = [] 
        right_lines = [] 
        for line in lines:
            for x1,y1,x2,y2 in line:

                if x1 == x2:
                    pass 
                else:
                    m = (y2 - y1) / (x2 - x1)
                    c = y1 - m * x1

                    if m < 0:
                        left_lines.append((m,c))
                    elif m >= 0:
                        right_lines.append((m,c))

        left_line = np.mean(left_lines, axis=0)
        right_line = np.mean(right_lines, axis=0)


        for slope, intercept in [left_line, right_line]:

            rows, cols = image.shape[:2]
            y1= int(rows) 

            y2= int(rows*0.6)

            x1=int((y1-intercept)/slope)
            x2=int((y2-intercept)/slope)
            poly_vertices.append((x1, y1))
            poly_vertices.append((x2, y2))
            self.draw_lines(img, np.array([[[x1,y1,x2,y2]]]))
        
        poly_vertices = [poly_vertices[i] for i in order]
        cv2.fillPoly(img, pts = np.array([poly_vertices],'int32'), color = (0,255,0))
        return cv2.addWeighted(image,0.7,img,0.4,0.)

    def hough_lines(self,img, rho, theta, threshold, min_line_len, max_line_gap):
        lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
        line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
        line_img = self.slope_lines(line_img,lines)
        return line_img

    def weighted_img(self,img, initial_img, alpha=0.1, beta=1., gamma=0.):

        lines_edges = cv2.addWeighted(initial_img, alpha, img, beta, gamma)
        return lines_edges
        
    def get_vertices(self,image):
        rows, cols = image.shape[:2]
        bottom_left  = [cols*0.15, rows]
        top_left     = [cols*0.45, rows*0.6]
        bottom_right = [cols*0.95, rows]
        top_right    = [cols*0.55, rows*0.6] 
        
        ver = np.array([[bottom_left, top_left, top_right, bottom_right]], dtype=np.int32)
        return ver
simple_lane_detector.jpg

TODO

  • 车道线区域

困难

  • 复杂路况,城市路况
  • 车道线被前车覆盖
  • 雨雪天气

相关文章

  • 2020 无人驾驶(6)之车道线检测

    甜品 为什么喜欢无人驾驶任务,主要原因无人驾驶任务是机器学习为主的一门前沿领域,在无人驾驶领域中机器学习的各种算法...

  • 2020 无人驾驶(5)之车道线检测

    这里使用 pygame 来显示图片,有关 pygame 使用方法还是比较简单,pygame.init()初始化 p...

  • 2020 无人驾驶(7)之车道线检测

    读取图像 使用 python-opencv 读取图像 使用 pygame 显示图像,这是一贯的套路 bird-ey...

  • 项目二:无人驾驶之车道线检测

    一、读取图像常用的三种方式 1.方式一:matplotlib.image 2.方式二:opencv读取图像 3.方...

  • 每天一个知识点(九)

    车道线的检测方法有很多,基于视觉的车道线检测有一下几种:基于霍夫之间检测、基于LSD直线检测、基于俯视图变换的车道...

  • 车道线检测

    今天完成了车道线的检测,检测的算法流程如图1所示,

  • 车道线检测-方法1

    在汽车自动驾驶过程中,你需要汽车能够对周围的世界进行很好的感知。我们人类通过使用眼睛来了解汽车跑的有多快,汽车的车...

  • 车道线检测技术分析

    姓名:刘一婷;学号:20021210599;学院:电子工程学院 转载于 :微信公众号“CV研习社”’ 原文链接:h...

  • 2020 简单车道线检测实现(上)

    分享一个简单车道识别示例,介绍如何使用 opencv 识别图像中车道线,有助于对车辆进行导航,虽然比较基础,主要目...

  • [图像算法]-无人驾驶-车辆+车道检测

    任务 1.车辆检测 2.车道检测 1.车辆检测 2.车道检测 一共要完成两项任务: 1. 在所提供的公路图片上检测...

网友评论

    本文标题:2020 无人驾驶(6)之车道线检测

    本文链接:https://www.haomeiwen.com/subject/szbbektx.html