美文网首页
Inception_v3计算速度测试

Inception_v3计算速度测试

作者: yanghedada | 来源:发表于2018-09-08 10:34 被阅读68次
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 26 08:52:10 2018

@author: yanghe
"""
from datetime import datetime
import numpy as np
import time
import tensorflow as tf


slim = tf.contrib.slim
trunc_normal = lambda stddev : tf.truncated_normal_initializer(stddev=stddev)

def inception_v3_arg_scope(weight_decay=0.00004,
                           stddev=0.1,
                           batch_norm_var_collection='moving_vars'):
    batch_norm_params = {
                         'decay':0.9997,
                         'epsilon':0.001,
                         'updates_collections':tf.GraphKeys.UPDATE_OPS,
                         'variables_collections':{
                              'beta':None,
                              'gama':None,
                              'moving_mean':[batch_norm_var_collection],
                              'moving_variance':[batch_norm_var_collection],
                                                  }
                         }
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_regularizer=slim.l2_regularizer(weight_decay)):
        
        with slim.arg_scope([slim.conv2d],
                            weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
                            activation_fn=tf.nn.relu,
                            normalizer_fn=slim.batch_norm,
                            normalizer_params=batch_norm_params) as sc:
            return sc
        
def inception_v3_base(inputs, scope=None):

    end_points = {}
    with tf.variable_scope(scope,'InceptionV3',[inputs]):
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                            stride=1, padding='VALID'):
            net = slim.conv2d(inputs, 32,[3,3], stride=2, scope='Conv2d_1a_3x3')
            net = slim.conv2d(net, 32, [3,3], scope='Conv2d_2a_3x3')
            net = slim.conv2d(net, 64, [3,3], padding='SAME',scope='Conv2d_2b_3x3')
            net = slim.max_pool2d(net, [3,3], stride=2, scope='MaxPool_3a_3x3')
            net = slim.conv2d(net, 80, [1,1], scope='Conv2d_3b_1x1')
            net = slim.conv2d(net, 192, [3,3], scope='Conv2d_4a_3x3')
            net = slim.max_pool2d(net, [3,3], stride=2, scope='MaxPool_5a_3x3')
            
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                            stride=1, padding='SAME'):
            with tf.variable_scope('Mixed_5b'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 64, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 48, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,64, [5,5], scope='Conv2d_0b_5x5')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 64, [1,1], scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2, 96, [3,3], scope='Conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2, 96, [3,3], scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,32, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

            with tf.variable_scope('Mixed_5c'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 64, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 48, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,64, [5,5], scope='Conv2d_0b_5x5')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 64, [1,1], scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2, 96, [3,3], scope='Conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2, 96, [3,3], scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,64, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
                
            with tf.variable_scope('Mixed_5d'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 64, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 48, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,64, [5,5], scope='Conv2d_0b_5x5')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 64, [1,1], scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2, 96, [3,3], scope='Conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2, 96, [3,3], scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,64, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
            
            with tf.variable_scope('Mixed_6a'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 384, [3,3], stride=2, padding='VALID',
                                           scope='Conv2d_1a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 64, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1, 96, [3,3], scope='Conv2d_0b_3x3')
                    branch_1 = slim.conv2d(branch_1, 64, [3,3], stride=2, padding='VALID',      
                                           scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.max_pool2d(net, [3,3], stride=2, padding='VALID',
                                               scope='MaxPool_1a_3x3')
                         
                net = tf.concat([branch_0, branch_1, branch_2], 3)
                
            with tf.variable_scope('Mixed_6b'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 192, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 128, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1, 128, [1,7], scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1, 192, [7,1], scope='Conv2d_0c_7x1')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 128, [1,1], scope='Conv2d_0a_1x1')  
                    branch_2 = slim.conv2d(branch_2, 128, [7,1], scope='Conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2, 128, [1,7], scope='Conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2, 128, [7,1], scope='Conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2, 192, [1,7], scope='Conv2d_0e_1x7')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
                
             
            
            with tf.variable_scope('Mixed_6c'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 192, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 160, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1, 160, [1,7], scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1, 192, [7,1], scope='Conv2d_0c_7x1')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 128, [1,1], scope='Conv2d_0a_1x1')  
                    branch_2 = slim.conv2d(branch_2, 160, [7,1], scope='Conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2, 160, [1,7], scope='Conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2, 160, [7,1], scope='Conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2, 192, [1,7], scope='Conv2d_0e_1x7')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
            
            with tf.variable_scope('Mixed_6d'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 192, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 160, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1, 160, [1,7], scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1, 192, [7,1], scope='Conv2d_0c_7x1')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 128, [1,1], scope='Conv2d_0a_1x1')  
                    branch_2 = slim.conv2d(branch_2, 160, [7,1], scope='Conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2, 160, [1,7], scope='Conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2, 160, [7,1], scope='Conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2, 192, [1,7], scope='Conv2d_0e_1x7')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
                
            with tf.variable_scope('Mixed_6e'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 192, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 160, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1, 160, [1,7], scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1, 192, [7,1], scope='Conv2d_0c_7x1')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 128, [1,1], scope='Conv2d_0a_1x1')  
                    branch_2 = slim.conv2d(branch_2, 160, [7,1], scope='Conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2, 160, [1,7], scope='Conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2, 160, [7,1], scope='Conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2, 192, [1,7], scope='Conv2d_0e_1x7')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
            end_points['Mixed_6e'] = net
            
            with tf.variable_scope('Mixed_7a'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 192, [1,1], scope='Conv2d_0a_1x1')
                    branch_0 = slim.conv2d(branch_0, 320, [3,3], stride=2, padding='VALID',
                                           scope='Conv2d_0b_3x3')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 192, [1,1], scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1, 192, [1,7], scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1, 192, [7,1], scope='Conv2d_0c_7x1')
                    branch_1 = slim.conv2d(branch_1, 192, [3,3], stride=2, padding='VALID',
                                           scope='Conv2d_0d_3x3')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.max_pool2d(net, [3,3], stride=2, padding='VALID',
                                               scope='MaxPool_1a_3x3')
                 
                net = tf.concat([branch_0, branch_1, branch_2], 3)
                
            with tf.variable_scope('Mixed_7b'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 320, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 384, [1,1], scope='Conv2d_0a_1x1')
                    
                    branch_1 = tf.concat([slim.conv2d(branch_1, 384, [1,3], scope='Conv2d_0b_1x3'),
                                          slim.conv2d(branch_1, 384, [3,1], scope='Conv2d_0c_3x1')], 3)
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 448, [1,1], scope='Conv2d_0a_1x1') 
                    branch_2 = slim.conv2d(branch_2, 384, [3,3], scope='Conv2d_0b_3x3')
                    branch_2 = tf.concat([slim.conv2d(branch_2, 384, [1,3], scope='Conv2d_0c_1x3'),
                                          slim.conv2d(branch_2, 384, [3,1], scope='Conv2d_0d_3x1')], 3)
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
                
            with tf.variable_scope('Mixed_7c'):
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net, 320, [1,1], scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net, 384, [1,1], scope='Conv2d_0a_1x1')
                    
                    branch_1 = tf.concat([slim.conv2d(branch_1, 384, [1,3], scope='Conv2d_0b_1x3'),
                                          slim.conv2d(branch_1, 384, [3,1], scope='Conv2d_0c_3x1')], 3)
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net, 448, [1,1], scope='Conv2d_0a_1x1') 
                    branch_2 = slim.conv2d(branch_2, 384, [3,3], scope='Conv2d_0b_3x3')
                    branch_2 = tf.concat([slim.conv2d(branch_2, 384, [1,3], scope='Conv2d_0c_1x3'),
                                          slim.conv2d(branch_2, 384, [3,1], scope='Conv2d_0d_3x1')], 3)
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net, [3,3], scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192, [1,1], scope='Conv2d_0b_1x1')
                    
                net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
            return net , end_points
            
def inception_v3(inputs,
                 num_classes=1000,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 prediction_fn=slim.softmax,
                 spatial_squeeze=True,
                 resue=None,
                 scope='InceptionV3'):
    with tf.variable_scope(scope, 'InceptionV3', [inputs, num_classes],
                           reuse=resue) as scope:
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
            net, end_points = inception_v3_base(inputs, scope=scope)
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                            stride=1, padding='SAME'):
            aux_logits = end_points['Mixed_6e']
            with tf.variable_scope('AuxLogits'):
                aux_logits = slim.avg_pool2d(aux_logits, [5,5], stride=3, padding='VALID',
                                                 scope='AvgPool_1a_5x5')
                aux_logits = slim.conv2d(aux_logits, 128, [1,1] ,scope='Conv2d_1b_1x1')
                aux_logits = slim.conv2d(aux_logits, 768, [5,5] ,
                                         weights_initializer=trunc_normal(0.01),
                                         padding='VALID',
                                         scope='Conv2d_1c_5x5')
                aux_logits = slim.conv2d(aux_logits,num_classes, [1,1] ,activation_fn=None,
                                         normalizer_fn=None,
                                         weights_initializer=trunc_normal(0.001),
                                         scope='Conv2d_1d_1x1')
                if spatial_squeeze :
                    aux_logits = tf.squeeze(aux_logits, [1,2],
                                            name='SpatialSqueeze')
                end_points['AuxLogits'] = aux_logits

            with tf.variable_scope('Logits'):
                net = slim.avg_pool2d(net,[8,8], padding='VALID',
                                      scope='Avgpool_1a_8x8')
                net = slim.dropout(net, keep_prob=dropout_keep_prob,
                                   scope='Dropout_1b')
                end_points['PreLogits'] = net
                logits = slim.conv2d(net, num_classes, [1,1],activation_fn=None,
                                     normalizer_fn=None,scope='Conv2d_1c_1x1')
                if spatial_squeeze :
                    logits = tf.squeeze(logits, [1,2],
                                            name='SpatialSqueeze')
                end_points['logits'] = logits
                end_points['predictions'] = prediction_fn(logits, scope='Predictions')
            return logits , end_points

def time_tensorflow_run(session, target, info_string):

    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in range(num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time() - start_time
        if i >= num_steps_burn_in:
            if not i % 10:
                print ('%s: step %d, duration = %.3f' %
                       (datetime.now(), i - num_steps_burn_in, duration))
        total_duration += duration
        total_duration_squared += duration * duration
    mn = total_duration / num_batches
    vr = total_duration_squared / num_batches - mn * mn
    sd = np.sqrt(np.abs( vr) )
    print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
         (datetime.now(), info_string, num_batches, mn, sd))

                
def run_benchmark(scope):
  with tf.Graph().as_default():
    
    image_size = 299
    images = tf.Variable(tf.random_normal([batch_size,
                                           image_size,
                                           image_size, 3],
                                          dtype=tf.float32,
                                          stddev=1e-1))
    with slim.arg_scope(scope()):
        logits , end_points = inception_v3(images, is_training=False)
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)

    time_tensorflow_run(sess, logits, "Forward")


batch_size = 32
num_batches = 10    
run_benchmark(inception_v3_arg_scope)   

相关文章

网友评论

      本文标题:Inception_v3计算速度测试

      本文链接:https://www.haomeiwen.com/subject/szekgftx.html