# -*- coding: utf-8 -*-
"""
Created on Wed Apr 25 18:03:52 2018
@author: yanghe
"""
import tensorflow as tf
import math
import time
from datetime import datetime
def print_activations(t):
print(t.op.name, ' ', t.get_shape().as_list())
def conv_op(input_op ,name ,kh ,kw ,n_out ,dh ,dw ,p):
n_in = input_op.get_shape().as_list()[-1]
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+'w',
shape=[kh, kw, n_in, n_out],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op, kernel, (1,dh,dw,1),padding='SAME')
biases = tf.get_variable(scope+'b',
[n_out],
initializer=tf.constant_initializer(0.01))
z = tf.nn.bias_add(conv, biases)
activation = tf.nn.relu(z, name=scope)
p += [kernel, biases]
print_activations(activation)
return activation
def fc_op(input_op ,name ,n_out, p):
n_in = input_op.get_shape().as_list()[-1]
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+'w',
shape=[n_in,n_out],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
biases = tf.get_variable(scope+'b',
shape=[n_out],
dtype=tf.float32,
initializer=tf.constant_initializer(0.01))
z = tf.matmul(input_op, kernel) + biases
activation = tf.nn.bias_add(z, biases)
p += [kernel, biases]
print_activations(activation)
return activation
def mpool_op(input_op, name, kh, kw, dh, dw):
max_pool = tf.nn.max_pool(input_op,
ksize=[1, kh, kw, 1],
strides=[1, dh, dw, 1],
padding='SAME',
name=name)
print_activations(max_pool)
return max_pool
def inference_op(input_op, keep_prob):
p = []
conv1_1 = conv_op(input_op, name='conv1_1', kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
conv1_2 = conv_op(conv1_1, name='conv1_2', kh=3, kw=3 ,n_out=64, dh=1, dw=1, p=p)
pool1 = mpool_op(conv1_2, name='pool1', kh=2, kw=2, dw=2, dh=2)
conv2_1 = conv_op(pool1, name='conv2_1', kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
conv2_2 = conv_op(conv2_1, name='conv2_2', kh=3, kw=3 ,n_out=128, dh=1, dw=1, p=p)
pool2 = mpool_op(conv2_2, name='pool2', kh=2, kw=2, dw=2, dh=2)
conv3_1 = conv_op(pool2, name='conv3_1', kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
conv3_2 = conv_op(conv3_1, name='conv3_2', kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
conv3_3 = conv_op(conv3_2, name='conv3_3', kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
pool3 = mpool_op(conv3_3, name='pool3', kh=2, kw=2, dw=2, dh=2)
conv4_1 = conv_op(pool3, name='conv4_1', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv4_2 = conv_op(conv4_1, name='conv4_2', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv4_3 = conv_op(conv4_2, name='conv4_3', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
pool4 = mpool_op(conv4_3, name='pool4', kh=2, kw=2, dw=2, dh=2)
conv5_1 = conv_op(pool4, name='conv5_1', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv5_2 = conv_op(conv5_1, name='conv5_2', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv5_3 = conv_op(conv5_2, name='conv5_3', kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
pool5 = mpool_op(conv5_3, name='pool5', kh=2, kw=2, dw=2, dh=2)
shp = pool5.get_shape().as_list()
flattend_shape = shp[1] * shp[2] * shp[3]
resh1 = tf.reshape(pool5, [-1, flattend_shape], name='resh1')
fc6 = fc_op(resh1, name='fc6',n_out=4096, p=p)
fc6_drop = tf.nn.dropout(fc6, keep_prob, name='fc6_drop')
fc7 = fc_op(fc6_drop, name='fc7', n_out=4096, p=p)
fc7_drop = tf.nn.dropout(fc7, keep_prob, name='fc7_drop')
fc8 = fc_op(fc7_drop, name='fc8', n_out=1000, p=p)
softmax = tf.nn.softmax(fc8)
prediction = tf.argmax(softmax, 1)
return prediction, softmax ,fc8, p
def time_tensroflow_run(session, target, feed, info_string):
num_steps_burn_in = 10
total_duration = 0.0
total_duration_squared = 0.0
for i in range(num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target, feed_dict=feed)
duration = time.time() - start_time
if i >= num_steps_burn_in:
if not i % 10:
print('%s : ste%d , duration =%.3f'%
(datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(), info_string, num_batches, mn, sd))
def run_benbhmark():
with tf.Graph().as_default():
image_size = 28
image = tf.Variable(tf.random_normal([batch_size,
image_size,
image_size,3],
dtype=tf.float32,
stddev=1e-1))
keep_prob = tf.placeholder(tf.float32)
prediction, softmax ,fc8, p = inference_op(image, keep_prob)
init = tf.global_variables_initializer()
sess= tf.Session()
sess.run(init)
time_tensroflow_run(sess, prediction, {keep_prob:1.}, 'forward')
objective = tf.nn.l2_loss(fc8)
grad = tf.gradients(objective, p)
time_tensroflow_run(sess, grad, {keep_prob:1.}, 'forward-backward')
batch_size= 32
num_batches = 10
run_benbhmark()
网友评论