全局ID生成

作者: 熊熊要更努力 | 来源:发表于2018-11-20 09:41 被阅读8次

目前TTDL(Taobao Distrubute Data Layer )提供的ID生成主要还是依托数据库来进行的。
mysql 需要一个专门的表来专门用于生成ID。
目前业界的通用方案:

  1. UUID
    目前是有以下几部分组合:
  • 当前日期和时间
  • 时钟序列
  • 全局唯一的IEEE机器识别号
  1. ID生成表模式
    比较经典的案例:Flicker
    Flicker 在解决全局ID生成方案里面就采用了MySQL自增长id的机制。
  • 首先创建单独的数据库,然后创建一个表:
create table `Tickets64`(
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
`stub` char(1) NOT NULL default '',
PRIMARY KEY(`id`),
UNIQUE KEY  `stub`(`stub`)
)ENGINE=MYISAM
  • 在我们应用端需要做下面的操作,在一个事物会话中提交
REPLACE INTO Tickets64(stub) values('a');
Select LAST_INSERT_ID();

replace into 跟 insert 功能类似,不同点在于:replace into 首先尝试插入数据到表中, 1. 如果发现表中已经有此行数据(根据主键或者唯一索引判断)则先删除此行数据,然后插入新的数据。 2. 否则,直接插入新数据。

  1. snowflake
    参考地址:https://segmentfault.com/a/1190000011282426
    SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:
    snowflake64位
  • 1位,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0
  • 41位,用来记录时间戳(毫秒)。
    41位可以表示241−1个数字,如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 241−1,减1是因为可表示的数值范围是从0开始算的,而不是1。也就是说41位可以表示241−1个毫秒的值,转化成单位年则是(241−1)/(1000∗60∗60∗24∗365)=69年
  • 10位,用来记录工作机器id。
    可以部署在210=1024个节点,包括5位datacenterId和5位workerId
    5位(bit)可以表示的最大正整数是25−1=31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId
  • 12位,序列号,用来记录同毫秒内产生的不同id。
    12位(bit)可以表示的最大正整数是212−1=4095,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号

SnowFlake可以保证:
所有生成的id按时间趋势递增
整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

用java实现snowflake算法

/**
 * Twitter_Snowflake<br>
 * SnowFlake的结构如下(每部分用-分开):<br>
 * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
 * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
 * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
 * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
 * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
 * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
 * 加起来刚好64位,为一个Long型。<br>
 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
 */
public class SnowflakeIdWorker {

    // ==============================Fields===========================================
    /** 开始时间截 (2015-01-01) */
    private final long twepoch = 1420041600000L;

    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;

    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;

    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;

    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;

    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;

    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);

    /** 工作机器ID(0~31) */
    private long workerId;

    /** 数据中心ID(0~31) */
    private long datacenterId;

    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;

    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;

    //==============================Constructors=====================================
    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }

    // ==============================Methods==========================================
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();

        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }

        //上次生成ID的时间截
        lastTimestamp = timestamp;

        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }

    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }

    //==============================Test=============================================
    /** 测试 */
    public static void main(String[] args) {
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
        for (int i = 0; i < 1000; i++) {
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}

相关文章

  • 全局ID生成

    目前TTDL(Taobao Distrubute Data Layer )提供的ID生成主要还是依托数据库来进行...

  • 全局ID生成

    UUID uuid 由及部分组合当前日期和时间时钟序列全局唯一的IEEE机器识别码 优势简单,易用 不足占用空间大...

  • 高并发分布式系统中生成全局唯一Id汇总

    数据在分片时,典型的是分库分表,就有一个全局ID生成的问题。 单纯的生成全局ID并不是什么难题,但是生成的ID通常...

  • 分布式系统中生成全局唯一ID方案

    本文主要介绍在一个分布式系统中, 如何去生成全局唯一的 ID。 前言 单纯的生成全局ID并不是什么难题,生成全局的...

  • 全局id如何生成?

    很多时候我们都需要生成一个全局id用于数据存储的主键,那么如何生成一个全局id呢?有哪些方法?优缺点是啥? 0.r...

  • Redis-全局唯一ID

    零、本文纲要 一、全局唯一ID 二、Redis生成全局唯一ID1、snowflake算法全局唯一ID策略2、Red...

  • 设计分布式唯一id生成

    1. 生成全局唯一id 什么时候需要生成全局唯一id db不帮你自动生成的时候。比如: db做了分库分表,没帮你自...

  • 全局唯一ID生成策略

    Entrance 数据在分片时,典型的是分库分表,就有一个全局ID生成的问题。 单纯的生成全局ID并不是什么难题,...

  • 生成全局唯一id的几种方式

    生成全局唯一id的几种方式: 1、uuid生成全球唯一id,生成方式简单粗暴,本地生成,没有网络开销,效率高;缺点...

  • 生成30的全局ID

    public class TraceIdGenerator { } 注:来源于开源组件

网友评论

    本文标题:全局ID生成

    本文链接:https://www.haomeiwen.com/subject/szkofqtx.html