美文网首页
2019-01-13[Stay Sharp]Gaussian m

2019-01-13[Stay Sharp]Gaussian m

作者: 三千雨点 | 来源:发表于2019-01-13 20:22 被阅读4次

What is gaussian mixture model ?

Gaussian mixture models are a probabilistic model for representing normally distributed subpopulations within an overall population.

image.png

The model is parameterized by two types of values:

  • the mixture component weights
  • the component means and variances.
    For a Gaussian mixture model with K components.

\begin{aligned} p ( x ) & = \sum _ { i = 1 } ^ { K } \phi _ { i } \mathcal { N } ( x | \mu _ { i } , \sigma _ { i } ) \\ \mathcal { N } ( x | \mu _ { i } , \sigma _ { i } ) & = \frac { 1 } { \sigma _ { i } \sqrt { 2 \pi } } \exp \left( - \frac { \left( x - \mu _ { i } \right) ^ { 2 } } { 2 \sigma _ { i } ^ { 2 } } \right) \\ \sum _ { i = 1 } ^ { K } \phi _ { i } & = 1 \end{aligned}
where \mu_{i} and \sigma_{i} is the mean and variance to the k^{th} components, and \phi_{i} is the correspoing component weight. from the last equation we get the total probability distribution normalizes to 1.

clustering with Gaussian mixture models

we assume that the data points are gaussian distributed, each gaussian distribution is assigned to a single cluster.

we often use Expectation-Maximization(EM) to find the parameters of the Gaussian model for each cluster.

References

https://people.csail.mit.edu/rameshvs/content/gmm-em.pdf

https://brilliant.org/wiki/gaussian-mixture-model/

相关文章

网友评论

      本文标题:2019-01-13[Stay Sharp]Gaussian m

      本文链接:https://www.haomeiwen.com/subject/tabldqtx.html