美文网首页
以下为机器人e资讯对其中4个问题的摘编

以下为机器人e资讯对其中4个问题的摘编

作者: 易保护 | 来源:发表于2018-01-24 15:04 被阅读0次

    以下为机器人e资讯对其中4个问题的摘编:

    第一个问题:人工智能 vs 人工智能+

    人工智能主要分三层。最底层是基础架构(Infrastructure),包括云计算、芯片以及TensorFlow这样的框架。在基础层之上是中间层,叫通用技术(EnablingTechnology),例如图像识别、语音识别、语义理解、机器翻译这些。?

    基础层和中间层,是互联网巨头的必争之地。比如芯片领域,Intel、英伟达、高通都投入巨资,竞争极其激烈。同样云计算、框架也是一样,都不是小公司能够涉足的领地。

    现在对于中间层的通用技术,BAT也极其重视。因为大家都相信人工智能是下一波工业革命浪潮。对腾讯、阿里、百度这些巨头来讲,要想在大浪中屹立不倒,必须要构建出人工智能的生态系统(Ecosystem)。而核心就是要依靠这些Enabling Technology技术。?

    相比创业公司,BAT的最大优势是什么呢?第一,不缺数据;第二,为了构建自己的生态系统,未来通用技术一定全部是免费的;第三,虽然通用技术免费,但BAT有羊毛出在身上的猪机会。这是典型的互联网打法。

    这里的猪是什么?猪就是云计算。例如百度的ABC策略,分别代表人工智能(AI)、大数据(Big Data)和云计算(Cloud Computing)。AI我可以不赚钱,开放给大家,那么大家想享受我的服务,就来买我的云吧。?

    而对于创业企业来说,只做图像识别、语音识别、语义理解、机器翻译这些通用技术,指望通过SDK卖钱,未来路会越来越窄,特别是BAT都免费的压力下。

    所以从这个角度讲,创业公司做下面两层风险比较大。我认为创业公司的机会在最上层,就是拿着下两层的成果去服务垂直行业,也就是我们所谓的人工智能+。

    第二个问题:人工智能+ vs +人工智能

    深入垂直行业的人工智能+,又可细分为两类情况:即“人工智能+行业”和“行业+人工智能”,他们间有明显的区别。

    ?“AI+行业”简单讲就是在AI技术成熟之前,这个行业、产品从未存在过。比如自动驾驶,亚马逊的Echo智能音箱、苹果的Siri语音助手。在人工智能技术未突破前,不存在这样的产品。因为AI,创造出了一条全新的产业链。?

    “行业+AI”就是行业本身一直存在,产业链条成熟,只是以前完全靠人工,效率比较低,现在加入AI元素后,使得行业效率有了明显提高。比如安防、医疗等领域。

    客观讲,这两个类别都有创业机会。但“AI+行业”,因为是一条新的产业链,创业公司与互联网巨头实际是处在同一起跑线上。巨头们坐拥数据优势。所以从这个角度,“行业+AI”相对对创业公司更为友好,也更容易构建出壁垒。

    我认为,未来行业壁垒才是人工智能创业最大的护城河。因为每个行业都有垂直纵深, 尽管BAT技术好一点、并不关键。拿医疗+AI举例,什么最重要?大量准确的被医生标注过的数据最重要。没有数据,再天才的科学家也无用武之地。

    但在国内,这个医疗数据拿出来非常困难。所以BAT做医疗一点优势都没有,因为他们要把这些数据,从各医院、各科室搞出来也很累。相反,如果一个创业者在医疗行业耕耘很多年,也许拿起数据来比大公司更容易。

    这要求创始团队的合伙人中,必须有懂行业、有行业资源的人才。这与互联网+一样,一旦细分到具体行业,并不是说你百度、腾讯有资金、有流量,投入人才就什么都能做,比拼的还有行业资源和人脉。

    之所以跟大家聊这个话题,是因为前一段去百度大学跟大家交流,他们提到百度人工智能在无人车和DuerOS的应用。同时又问我,人脸识别在国内安防领域的应用价值非常大。像海康威视有近3000亿人民币的市值,每年光净利润就有近百亿。百度在AI方面是不是该考虑进军这个领域。我回答说千万别,因为安防是典型的、有巨大壁垒的“行业+AI”领域。?

    即使百度技术好,在人脸识别率方面比海康威视高一个百分点(实际不一定,海康背后有几百人的AI研发团队)。但这并不代表百度就能替代海康。因为安防是“非关键性应用”(non-mission-critical),100个犯人我识别了95个,你比我多识别了一个做到了96个,其实没那么重要。?

    而反过来,海康对比百度有什么优势?首先海康是做摄像头的,用自己的硬件跑自己的算法,是很自然的事儿。就像苹果手机,软硬一体体验更好。其次,海康做了这么多年的安防,积累了非常多的数据,人脸的数据、环境的数据……在安防领域有数据优势。最后,海康给公安系统做了很多类似警务通、基站信息采集、视图档案管理等SaaS平台的东西,以及警用云系统。我们可以认为公安系统的IT化,其中有一部分就是海康威视参与的。

    这些东西可能不赚钱,但却为海康构建了壁垒。因为底层的基础设施都是我建的,那前端的东西就只能用我的(我可以有100个理由,说竞品与我不兼容)。而且海康做了这么长时间,积累了大量的客户资源,特别是政府公安局的资源,开拓这些资源非常需要时间。

    这些就是所谓的行业纵深。所以即使对BAT而言,想进入“行业+AI”领域,选择垂直赛道时,同样要非常谨慎。在巨大的行业壁垒面前,真不是说我的算法比你好一些,市场就是我的,只有技术优势仍然差的很远。

    回归 “AI+行业”和“行业+AI”,通常来讲前者的行业纵深会比较浅,而后者则有巨大的行业壁垒。而行业壁垒,则是创业公司最大的护城河,也是抵挡BAT的关键。

    第三个问题:关键性应用 vs 非关键性应用

    谈到人工智能领域的创业,很多人都会有个误解,就是如果我团队没有个大牛的科学家,比如斯坦福、MIT的博士坐镇,我都不好意思讲在人工智能方面创业。其实这个认知是完全错的。因为在人工智能领域,算法到底有多重要,完全取决于你要准备进入哪个行业。

    根据行业和应用场景不同,我认人工智能的创业本质上有mission-critical和non-mission-critical之分。为了方便大家理解,我们简称为“关键性应用”和“非关键性应用”。?

    “关键性应用”要追求99.9……%后的多个9,做不到就没法商业化。比如大家认为,99%可靠度的自动驾驶能上路吗?肯定不能,意味着100次就出1次事故。99.9%也不行,1000次出一次事故。

    千万记住,99%和99.9%的可靠度差距并不是0.9%,而是要反过来算,差距是10倍。也包括手术机器人,听起来99.9%可靠度已经很高了,但意味着1000次出一次医疗事故,放在美国,医院还不得被巨额索赔搞得破产。

    所以“关键性应用”领域,就是一丁点儿错都不能犯的人工智能领域,必须要有技术大牛、科学家或算法专家坐镇。同时,这类项目研发周期都很长。

    正如以色列做ADAS (高级驾驶辅助系统)解决方案的Mobileye公司,今年3月被Intel以153亿美金收购。大家知道这家公司研发周期有多长吗?Mobileye成立于1999年,到他们推出首款产品、挣到第一桶金已是2007年。长达8年的研发周期。这在互联网创业里不可想象。包括谷歌无人车从2009年开始研发,到现在一直没有商业化;达芬奇手术机器人从启动研发到2000年拿到美国食品药品管理局(FDA)的认证,花了十年时间。

    ?“关键性应用”的普遍特点就是这样,项目通常很贵,研发周期巨长,离钱非常远,需要持续的融资能力,团队怎样才有持续融资?起码要有非常好的简历和非常好的背景。这个是能够持续融资的必要前提。所以大家可以看到,今天做无人驾驶的创业团队都是高富帅。因为不是高富帅,你都熬不到产品真正商业化应用那天。

    当然,如果在人工智能领域都是“关键性应用”,那就没大多数创业者什么事了。实际上,人工智能领域的创业,95%都是“非关键性应用(none-mission-critical)”。简单讲对这些领域,AI的可靠度只要过了基础线,高一点低一点区别不大。

    最简单的例子,现在很多公司的门禁开始用人脸识别。你今天带个帽子,明天戴个墨镜或口罩,识别率没法做到99%。可即使没识别出来也没问题。因为所有带人脸识别的门禁都有地方让你按指纹。即使指纹也刷不进去,问题也不大,公司不还有前台吗。

    这就是“非关键性应用“。这类项目不追求99%后面的很多个9。实际上,国内人工智能和机器人方向的创业,大部分领域都是“非关键性应用”。当然并不是说,在这个领域算法不重要,你天天认不出来也不行,所以一定要过了基础的可用性门槛,偶尔出现问题可以容忍。“关键性应用”则不能容忍。

    “非关键性应用“不追求高大上,简单、实用、性价比高更重要,这样的项目通常比拼综合实力。包括:

    对行业的洞察理解。要熟知行业痛点;

    产品和工程化能力。光在实验室里搞没意义;

    成本控制。不光能做出来的产品,还得便宜的做出来;

    供应链能力。不光能出货,还要能批量生产;

    营销能力。产品出来了,你得把东西卖出去。团队里有没有营销高手,能不能搞定最好的渠道是关键。?

    所以大家在创业组团队时,一定要想好你选择的赛道处于哪个领域,不同的赛道对于团队的要求是不一样。“关键性应用”必须有技术大牛坐镇,“非关键性应用”则要求团队更加综合和全面。

    第四个问题:2C vs 2B

    最后一个问题,简单说一下,科技成熟都需要一定的时间。因为从任何技术普及演进的角度,几乎都延续了先是从军工(航天)、到政府、到企业、到B2B2C、再到2C这个规律。人工智能也一样,目前人工智能在2C市场还不是很成熟。

    简单说机器人,在个人消费者市场,出货量大的机器人只有4类产品:扫地机器人、无人机、STEAM教育类机器人和亚马逊ECHO为代表的智能音箱。为什么2C市场早期的普及有一定的困难,简单讲几个原因:?

    1. 产业链不成熟

    我做一个创新的东西,成品有10个部件。每一个部件都得自己做,而且因为出货量不大,每个部件都没有规模效应,这就导致每个部件都很贵,那你最后做出成品一定很贵。这是非常大的问题。

    2. 2C是额外花钱

    这也是很重要的一个问题,2C端的用户因为自掏腰包、额外花钱,所以对价格通常比较敏感,产品很贵就是一个很大的门槛。

    3. 2C产品的用户期待度高

    用户买了这么贵的东西,自然对产品的期待度会更高很多。大家觉得我买一个机器人回来,恨不得什么都能干:又能唱歌、又能跳舞、又能聊天、又能清洁、又能讲英语。但这是不现实的,现在的技术成熟度离此还有些远。

    相对于2C端,这些问题在2B端却不是问题。

    1. 2B端对价格承受能力更高

    首先,企业对价格的承受能力显然比2C强很多。你说一个机器人2万,2C消费者不可能买,但企业问题不大,企业对成本承受能力高。

    2. 2B的核心目的是降成本

    举例工业机器人,10万块钱一个,听起来很贵。但一个工业机器人替代你2个岗位。这2个岗位一年也得10万块钱,还不算四险一金。然后这机器人能工作4年,这一下成本只有你原来的25%,甚至不到。那么企业一算账,觉得还是很便宜。

    3. 2B可以采取人机混合模式

    还有2B端的机器人应用更简单一些。一方面大多是单任务,机器人只要做好一件事就行了,实现起来简单。另外,很多都是以"人机混合"模式在作业。也就是以前需要10个人干活,现在我用机器人替代一半人。简单重复的工作用机器人替代,复杂的用剩下的5个人,这就是"人机混合"模式。

    举个例子,现在国内外已有很多安保机器人,按固定路线去巡逻。你可以理解为移动的摄像头,当然算法上肯定加入了一些识别的东西。固定绕路线巡逻,这个完全可以交给机器人来做。难的是,在巡逻的过程中,如果发现有老太太摔倒了,让机器人扶起来,这个目前还做不到。

    但这不重要,你们后台不还有5个人么,让他们过来就好了。所以人机混合是2B比较主流的模式,这个大幅降低了机器人普及的难度。

    最后再说一点,目前大多数AI创业公司都是技术专家主导,这很容易理解,因为现在技术还有壁垒,技术专家主导起码保证产品能做出来。不过未来随着技术门槛的降低,特别在“非关键应用”领域里,团队的核心主导,会慢慢过渡到产品经理和行业专家为主,因为他们离用户需求最近。“非关键应用”领域,懂需求比技术实现更重要。长期来看,人工智能创业和任何其他领域的创业一样,一定是综合实力的比拼!

    相关文章

      网友评论

          本文标题:以下为机器人e资讯对其中4个问题的摘编

          本文链接:https://www.haomeiwen.com/subject/tdsuaxtx.html