美文网首页
AQS懵逼探索之路

AQS懵逼探索之路

作者: DH大黄 | 来源:发表于2021-06-22 22:30 被阅读0次

    想到了之前一直想看又不能静下心去细看的AQS,于是乎今天上班摸鱼的时候又去看了一遍
    自己看的时候做的笔记都放在了下面的代码注释里面,方便以后自己去回顾,也分享给同样有需要的小伙伴们(代码有点多,希望能够耐心看完)
    不得不感叹,Doug Lea大佬真的是太强了!
    另外,如果有写的不对的地方,希望大佬们能够帮忙指正

    /**
     * 获取锁及获取不到锁的处理逻辑
     */
    // ReentrantLock
    public void lock() {
        sync.lock();
    }
    
    final void lock() {
        acquire(1);
    }
    // tryAcquire为协作类即ReentrantLock实现的(不在此次范围)
    
    // AQS
    // 尝试获取锁
    public final void acquire(int arg) {
        // tryAcquire 尝试获取锁 acquireQueued 入队 addWaiter 新增一个节点
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            // 中断当前线程
            selfInterrupt();
    }
    
    private Node addWaiter(Node mode) {
        // 新建一个节点
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        // pred = 尾节点
        Node pred = tail;
        // 尾节点不为空
        if (pred != null) {
            // 入队并将当前节点作为尾节点
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        // 入队
        enq(node);
        return node;
    }
    
    // 入队
    private Node enq(final Node node) {
        for (;;) {
            // t = 尾节点
            Node t = tail;
            if (t == null) { // Must initialize
                // 新建一个节点,并将其设置为头节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                // 将当前节点作为尾节点
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
    
    // 加入队列
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            // 循环
            for (;;) {
                // 获取当前节点的前置节点
                final Node p = node.predecessor();
                // 假如为头节点,则尝试获取一下锁
                if (p == head && tryAcquire(arg)) {
                    // 将当前节点设置为头节点,并清空当前节点的信息(线程,前置节点置为null)
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    // 获取锁成功后,就不需要中断了
                    return interrupted;
                }
                // 获取锁失败,判断是否需要挂起当前线程,
                if (shouldParkAfterFailedAcquire(p, node) &&
                    // 挂起线程
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // 前置节点的waitStatus
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            // 前置节点待唤醒,需要挂起当前节点
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            // 前置节点取消,再往前找,一直找到不为取消的位置(删除那些已经取消的节点)
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            // 回去将前置节点的waitStatus修改为SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
    
    /**
     * 获取锁及获取不到锁的处理逻辑
     */
     public void unlock() {
        sync.release(1);
    }
    
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    
    // tryRelease为协作类即ReentrantLock实现的(不在此次范围)
    
    // AQS
    // 释放锁
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            // 有头节点且waitStatus不为0
            if (h != null && h.waitStatus != 0)
                // 唤醒线程
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    
    private void unparkSuccessor(Node node) {
        /*
            * If status is negative (i.e., possibly needing signal) try
            * to clear in anticipation of signalling.  It is OK if this
            * fails or if status is changed by waiting thread.
            */
        int ws = node.waitStatus;
        // ws<0 有未取消,在等待唤醒的线程(将头节点waitStatus设置为0)
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);
    
        /*
            * Thread to unpark is held in successor, which is normally
            * just the next node.  But if cancelled or apparently null,
            * traverse backwards from tail to find the actual
            * non-cancelled successor.
            */
        // s = head.next
        Node s = node.next;
        // 假如头节点的下一个节点=s为空或已经取消,将s置为空,并从后往前找
        if (s == null || s.waitStatus > 0) {
            s = null;
            // 从后往前找,直到找到距离头节点最近的待唤醒的节点
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            // 如果s不为空,则唤醒s对应的线程
            LockSupport.unpark(s.thread);
    }
    
    
    /**
     * 在队列中放弃等待
     */
    private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        if (node == null)
            return;
    
        node.thread = null;
    
        // Skip cancelled predecessors
        Node pred = node.prev;
        // 删除cancel的节点
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;
    
        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        Node predNext = pred.next;
    
        // Can use unconditional write instead of CAS here.
        // After this atomic step, other Nodes can skip past us.
        // Before, we are free of interference from other threads.
        node.waitStatus = Node.CANCELLED;
    
        // If we are the tail, remove ourselves.
        // compareAndSetTail(node, pred) 将前置节点设置为尾节点
        if (node == tail && compareAndSetTail(node, pred)) {
            // 删除当前节点
            compareAndSetNext(pred, predNext, null);
        } else {
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            int ws;
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    // 如果后继的节点需要被唤醒,则将当前节点的前置节点的next设置为当前节点的后置节点
                    compareAndSetNext(pred, predNext, next);
            } else {
                // 唤醒后继节点(后续节点被唤醒后拿不到锁,又会被挂起)
                unparkSuccessor(node);
            }
    
            node.next = node; // help GC
        }
    }
    
    /**
     * Node的waitStatus枚举
     */
    /** waitStatus value to indicate thread has cancelled */
    static final int CANCELLED =  1;
    /** waitStatus value to indicate successor's thread needs unparking */
    static final int SIGNAL    = -1;
    /** waitStatus value to indicate thread is waiting on condition */
    static final int CONDITION = -2;
    /**
     * waitStatus value to indicate the next acquireShared should
     * unconditionally propagate
     */
    static final int PROPAGATE = -3;
    

    补充一下看代码的思路


    AQS.png

    学习对应AQS协作类的思路
    主要关注三个内容
    1.对State的修改
    2.对应的队列(FIFO)
    3.获取和释放锁的方式(分为公平与非公平两种情况)

    相关文章

      网友评论

          本文标题:AQS懵逼探索之路

          本文链接:https://www.haomeiwen.com/subject/tffvyltx.html