在竞争趋于白热化的市场条件下,传统行业需要通过借助某种区分手段,重新对流程进行优化,才有机会发现市场空隙,真正实现市场的突破。在传统的皮草行业,常见的几句口号是“顾客就是上帝,时间就是生命,信息就是金钱”。这句话阐述了顾客的重要性,以及需要从两个方面来满足顾客的需求。
当下大数据、互联网、移动互联网所带来的改变和价值已经毋庸置疑,但对于传统的皮草行业及传统皮草企业来说,究竟该如何制定自己的大数据战略,从而让大数据能够真正为自己所用、产生相应的价值呢?大数据所带来的改变和价值已经毋庸置疑,但对于传统皮草行业和皮草企业而言,究竟该如何制定自己的大数据战略,从而让大数据为自己所用呢?
皮草产业要运用实施大数据战略,需要从三大关键方面规划:
1.制定大数据规划找准切入点
2.设计合理的大数据组织结构
3.搭建富有执行力的大数据团队
1.制定大数据规划找准切入点
成功的大数据规划聚焦于四个核心要素:应用场景、数据产品、分析模型和数据资产,企业着手实施大数据战略要着重考虑这四大方面,管理者需要在这四方面做好规划,才能给企业带来更好的业务价值。
第一方面是应用场景。企业需要确定不同业务投入大数据的优先级,确定大数据的切入点。企业需要优先考虑业务应在哪些方面投入大数据可以为企业提升绩效。常见的大数据应用场景,包括业务运营监控、用户洞察与用户体验优化、精细化运营和营销、业务市场传播、经营分析等常见的方面。当然在人力资源、IT运维以及财务等方向也可以引入大数据。企业高管需要和各业务的整体负责人、数据专家一起开展研讨会,分析哪些业务投入大数据可以使得业务的绩效提升最为显著,从而确定不同业务投入大数据的优先级,找准大数据的切入点。“数据能够在哪些领域实现业绩的大幅提高?数据能在哪些领域实现企业运营效率的提升”这些问题很重要,一开始就必须提出来。每个重要业务部门和职能部门都需要考虑这个问题,并展开相关的研讨。企业高管实施大数据战略的时候需要高度重视这一步,但在国内很多企业往往忽略的这一方面,投入大数据往往不是以提升业绩导向,而是以学术导向,使得很多企业实施大数据的看不到数据对企业绩效的提升,从而使得大数据战略流产。
第二方面是数据产品。在确定了大数据的业务投入优先级后,需要考虑的是如何通过数据产品来帮助提升业务的绩效。为什么是“数据产品”而不是“数据工具”,这是因为“数据产品”比“数据工具”更加强调易用性和用户体验。数据和分析模型本身的输出可能会比较复杂,比较难理解,这样往往导致经理或者一线员工等数据用户无法理解,更谈不上运用。所以,只有数据产品在业务具体的场景运用的时候,以非常简单易用的方式来呈现,才能让更多的数据用户使用。企业数据用户在实际运用大数据的时候,更关注的是大数据的产品在哪些方面可以直接帮助企业提升绩效,不会太关注大数据这些产品背后的逻辑、分析模型等“黑洞”。如果我们在提供数据产品的时候需要数据用户理解很多“黑洞”,那么数据一定运用不起来,数据的价值就会大打折扣。
第三方面是数据模型。数据产品背后的“黑洞”是数据模型。数据的堆砌不会创造太多的业务价值,需要数据模型、数据挖掘的方法来实现海量数据的商业洞察。常见的模型如预测和分类。在预测方面,如通过高级的模型来预测哪些用户可能会付费,他们的特征是什么,经常在什么地方出现;通过数据模型来预测付费客户的数量,以提前发现考核期结束后付费客户数量和KPI的差距以及优化方向;通过预测模型来洞察用户的未来购买需求;在分类模型方面,我们可以通过分类模型结合大数据实现更准确更实时的用户细分;或者通过分类模型对不同价值的客户进行合理的分类,确定服务的优先级和服务内容。企业在制定大数据战略方向时,需要介入数据专家根据应用场景和数据产品的输出来选择模型以及优化模型,从而确定模型研发的方向和优先级。
第四方面是数据资产。有了应用场景、数据产品和数据模型这三大方面,就能更清楚地知道为了实现这三大方面,我们需要哪些数据,什么数据是企业现在拥有,什么数据可以通过合作产生,什么数据需要外部整合,什么数据需要进行购买或者投资。有了前面这三大方面(应用场景、数据产品和数据模型)的规划,大数据的采集、整合、管理的策略便能比较容易理清头绪和相应的规划。当我们合理地整理企业所拥有的数据,并整合有利于业务发展的外部的数据,形成系统化的管理,才能很好地形成企业的数据资产。但在国内,最大的问题常常是各业务部门、各事业部以及职能部门的数据经常各自为政,数据存放在不同的数据库中,数据无法整合打通,企业内部形成各种孤岛,导致企业数据资产无法发挥整合效益,数据资产流失。要让企业的数据成为长期的数据资产,企业高管则需牵头规划,整合不同业务部门、不同事业部的数据,推动建设高数据质量的数据治理标准。
2.设计合理的大数据组织架构
企业的组织结构是企业战略能够顺利实施的基础,所以,大数据团队合理的组织架构设置对于大数据战略能否成功实施尤为关键。国内很多企业往往忽略这一方面。很多企业设立数据团队缺乏统一规划,哪个事业部需要数据人员则在该事业部(或业务部门)设立,如下图的“组织结构1”,这种组织架构是国内最常见的,这种组织架构最大的问题是数据分散,缺乏统一管理和整合,企业内部各事业群(或业务部门)数据各自为政,形成数据孤岛,数据无法整合使用,导致数据资产流失。
另一种常见的做法是在公司只设立一个中央数据部门,该数据部门统一服务各个事业部(或业务部门),各个事业部(或业务部门)没有数据人员或者团队,如图中的“组织结构2”。这种组织架构的问题在于数据虽然集中管理,但数据远离业务,导致很多数据人员不理解业务,无法挖掘数据的价值,无法通过数据很好地辅助业务提升绩效或者运营效率。由于数据人员无法理解业务,导致数据库中存储的很多数据变成“死”数据,数据的业务含义少有人理解,数据的价值便容易流失。
较为合理的数据团队在组织架构应该这样设立:首先,设立公司级的中央数据部门,集中存储和管理数据;其次是每个事业部(或业务部门)设立数据团队;第三是在总办设立CDO的岗位。这样的好处在于数据能够集中管理,数据贴近业务,可以很好地发挥数据的价值;同时,在总办(高管团队)设立CDO岗位,可以让数据更好地为决策层服务,数据分析所发现的商业价值也可以更快地应用于业务战略调整。
3.搭建有效的大数据团队
人才是大数据战略实施至关重要的方面,因此,设置符合大数据能力要求的团队就显得尤为重要。如果组织缺乏合适的人才或能力,大数据战略实施的结果很可能会令人沮丧。因此,企业做好相应的人才规划,按照合理的规模和构成来建设人才库。在合理的大数据组织架构下,有两类数据团队,一类是各事业部中的数据团队;第二类是中央数据部门的数据团队。两类团队其职责不同,因此,能力要求也不一样。事业部的数据团队能力要求是数据分析为主,招聘主要为数据分析师或者数据分析专家。而中央数据部门的数据能力要求较为复杂,包括六大方面的能力,即数据分析、用户研究、数据产品、算法工程、数据统计和数据平台。在此我们展开介绍中央数据部门六大方向的能力要求:
(1)数据分析团队负责公司级的业务数据体系梳理和建设、公司级的业务专题数据分析和收入分析;此处的数据分析团队能力要求与事业部中的数据分析团队类似,区别主要是他们分析时的视角有所不同;
(2)用户研究团队负责用户调研、口碑监测、产品体验分析等方面。用户研究团队主要面对的小数据,但由于用户研究可以发现大数据所不能发现的用户使用行为背后的动机及态度等方面,所以用户研究团队与数据分析团队两者结合将能实现大小数据结合全方面洞察用户的作用;
(3)数据产品团队负责把分析能力产品化、或者基于算法或者模型所产生的数据产品(如渠道防作弊系统、交叉营销分析系统等)、数据平台相应系统的产品化、数据可视化等方面的工作。该团队人员类型有产品经理、前台开发以及交互设计师等;
(4)算法工程团队主要负责算法研究并把算法能力嵌入到业务的流程或者业务产品中,帮助业务提升业务绩效或者提升运营效率。研究的方向包括分类算法、个性化推荐算法、基于数据挖掘的客户生命周期管理等方向。算法工程团队主要是招聘算法工程师,对数据敏感,要求数学和机器学习方面的能力较高,同时写代码的能力较好。
总结
传统皮草产业的发展需要在新时期结合大数据的潜力,通过双赢的方式获得前进的动力。在未来会促进信息学科的更新与变化,在现有数据结构、数据仓库、数据处理等方面实现新的突破。传统的大数据将会承担起更为重要的决策角色,提升企业新业务的整体利润源。皮草企业发展带来的业务成长性很大程度会来自于对自身数据的分析与挖掘,大数据作为企业的动力源,会在不久的将来,发挥更加重要的作用。值得说明的是,大数据时代会有更多传统红海市场的皮草公司参与数据分析与决策的竞争,产生出更多复杂数据处理的新方法。从传统皮草市场切入,皮乐乐要为皮革皮草公司建立大数据媒体平台,传统皮草产业能否成功借助大数据实现逆袭,我们会很快得到答案,希望双赢的结果可以打造另一片蓝天!
网友评论