前言
如果你对RxJava1.x还不是了解,可以参考下面文章。
1. RxJava使用介绍 【视频教程】
2. RxJava操作符
• Creating Observables(Observable的创建操作符) 【视频教程】
• Transforming Observables(Observable的转换操作符) 【视频教程】
• Filtering Observables(Observable的过滤操作符) 【视频教程】
• Combining Observables(Observable的组合操作符) 【视频教程】
• Error Handling Operators(Observable的错误处理操作符) 【视频教程】
• Observable Utility Operators(Observable的辅助性操作符) 【视频教程】
• Conditional and Boolean Operators(Observable的条件和布尔操作符) 【视频教程】
• Mathematical and Aggregate Operators(Observable数学运算及聚合操作符) 【视频教程】
• 其他如observable.toList()、observable.connect()、observable.publish()等等; 【视频教程】
3. RxJava Observer与Subcriber的关系 【视频教程】
4. RxJava线程控制(Scheduler) 【视频教程】
5. RxJava 并发之数据流发射太快如何办(背压(Backpressure)) 【视频教程】
开始
Rxjava 已经于2016年11月12日正式发布了2.0.1版本。
RxJava 2.0 已经按照Reactive-Streams specification规范完全的重写了。RxJava2.0 已经独立于RxJava 1.x而存在。
RxJava2.0相比RxJava1.x,它的改动还是很大的,下面我将带大家了解这些改动。
RxJava2.0与1.x的区别
Maven地址
为了让 RxJava 1.x 和 RxJava 2.x 相互独立,我们把RxJava 2.x 被放在了maven io.reactivex.rxjava2:rxjava:2.x.y 下,类放在了 io.reactivex 包下用户从 1.x 切换到 2.x 时需要导入的相应的包,但注意不要把1.x和2.x混淆了。
这里写图片描述接口变化
RxJava2.0 是遵循 Reactive Streams Specification 的规范完成的,新的特性依赖其提供的4个基础接口。分别是:
- Publisher
- Subscriber
- Subscription
- Processor
在后边的介绍中我们会涉及到。
Javadoc文档
官方2.0的 Java 文档 http://reactivex.io/RxJava/2.x/javadoc/
添加依赖
Android端使用RxJava需要依赖新的包名:
//RxJava的依赖包
compile 'io.reactivex.rxjava2:rxjava:2.0.3'
//RxAndroid的依赖包
compile 'io.reactivex.rxjava2:rxandroid:2.0.1'
Nulls
RxJava1.x中,支持 null 值,如下代码所示:
Observable.just(null);
Single.just(null);
RxJava 2.0不再支持 null 值,如果传入一个null会抛出 NullPointerException
Observable.fromCallable(() -> null)
.subscribe(System.out::println, Throwable::printStackTrace);
Observable.just(1).map(v -> null)
.subscribe(System.out::println, Throwable::printStackTrace);
Observable and Flowable
在本节开始之前,我们先了解下RxJava背压(Backpressure)机制的问题。
什么是背压(Backpressure)
在RxJava中,可以通过对Observable连续调用多个Operator组成一个调用链,其中数据从上游向下游传递。当上游发送数据的速度大于下游处理数据的速度时,就需要进行Flow Control了。如果不进行Flow Control,就会抛出MissingBackpressureException异常。
这就像小学做的那道数学题:一个水池,有一个进水管和一个出水管。如果进水管水流更大,过一段时间水池就会满(溢出)。这就是没有Flow Control导致的结果。
再举个例子,在 RxJava1.x 中的 observeOn, 因为是切换了消费者的线程,因此内部实现用队列存储事件。在 Android 中默认的 buffersize 大小是16,因此当消费比生产慢时, 队列中的数目积累到超过16个,就会抛出MissingBackpressureException。
如果你想了解更多关于背压的知识,请参考:
http://blog.csdn.net/jdsjlzx/article/details/52717636
http://www.jianshu.com/p/2c4799fa91a4
下面我们通过一段代码来“感受”一下背压。
Observable.interval(1, TimeUnit.MILLISECONDS)
//将观察者的工作放在新线程环境中
.observeOn(Schedulers.newThread())
//观察者处理每1000ms才处理一个事件
.subscribe(new Subscriber<Long>() {
@Override
public void onCompleted() {
System.out.println("onCompleted");
}
@Override
public void onError(Throwable e) {
System.out.println("onError :"+ e);
}
@Override
public void onNext(Long value) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("onNext value :"+ value);
}
});
Flow Control有哪些思路呢?大概是有四种:
- 背压(Backpressure);
- 节流(Throttling);
- 打包处理;
- 调用栈阻塞(Callstack blocking)。
这里限于篇幅的问题,我们就不再一一介绍了,请移步:https://gold.xitu.io/post/58535b5161ff4b0063aa6b10
如何让Observable支持Backpressure?
在RxJava 1.x中,有些Observable是支持Backpressure的,而有些不支持。但不支持Backpressure的Observable可以通过一些operator来转化成支持Backpressure的Observable。这些operator包括:
- onBackpressureBuffer
- onBackpressureDrop
- onBackpressureLatest
- onBackpressureBlock(已过期)
它们转化成的Observable分别具有不同的Backpressure策略。
而在RxJava2.0 中,Observable 不再支持背压,而是改用Flowable 支持非阻塞式的背压。Flowable是RxJava2.0中专门用于应对背压(Backpressure)问题而新增的(抽象)类。其中,Flowable默认队列大小为128。并且规范要求,所有的操作符强制支持背压。幸运的是, Flowable 中的操作符大多与旧有的 Observable 类似。
上面提到的四种operator的前三种分别对应Flowable的三种Backpressure策略:
- BackpressureStrategy.BUFFER
- BackpressureStrategy.DROP
- BackpressureStrategy.LATEST
onBackpressureBuffer是不丢弃数据的处理方式。把上游收到的全部缓存下来,等下游来请求再发给下游。相当于一个水库。但上游太快,水库(buffer)就会溢出。
这里写图片描述而Consumer即消费者,用于接收单个值,BiConsumer则是接收两个值,Function用于变换对象,Predicate用于判断。这些接口命名大多参照了Java8,熟悉Java8新特性的应该都知道意思,这里也就不再赘述了。
public interface Consumer<T> {
void accept(T t) throws Exception;
}
新的ActionX、FunctionX的方法声明都增加了一个throws Exception,这带来了显而易见的好处,现在我们可以这样写:
Flowable.just("qq.txt")
.map(new Function<String, Integer>() {
@Override
public Integer apply(String value) throws Exception {
File file = new File(value);
file.createNewFile();
return 99;
}
});
而createNewFile方法显式的抛出了一个IOException,而在以前是不可以这样写的。
Schedulers
在2.0的API中仍然支持主要的默认scheduler: computation, io, newThread 和 trampoline,可以通过io.reactivex.schedulers.Schedulers这个实用的工具类来调度。
2.0中不存在immediate 调度器。 它被频繁的误用,并没有正常的实现 Scheduler 规范;它包含用于延迟动作的阻塞睡眠,并且不支持递归调度。你可以使用Schedulers.trampoline()来代替它。
Schedulers.test()已经被移除,这样避免了默认调度器休息的概念差异。那些返回一个”global”的调度器实例是鉴于test()总是返回一个新的TestScheduler实例。现在我们鼓励测试人员使用这样简单的代码new TestScheduler()。
io.reactivex.Scheduler抽象类现在支持直接调度任务,不需要先创建然后通过Worker调度。
操作符的差别
2.0中大部分操作符仍然被保留,实际上大部分行为和1.x一样。
关于操作符,引用JakeWharton的总结就是:
All the same operators(you konw and love or hate and despise) are still there.
Transformer
RxJava 1.x 中Transformer实际上就是Func1<Observable,Observable>
,换句话说就是提供给他一个Observable它会返回给你另一个Observable,这和内联一系列操作符有着同等功效。
相关API如下:
public interface Transformer<T, R> extends Func1<Observable<T>, Observable<R>> {
// cover for generics insanity
}
public interface Func1<T, R> extends Function {
R call(T t);
}
实际操作下,写个方法,创建一个Transformer调度器:
//子线程运行,主线程回调
public Observable.Transformer<T, T> io_main(final RxAppCompatActivity context) {
return new Observable.Transformer<T, T>() {
@Override
public Observable<T> call(Observable<T> tObservable) {
Observable<T> observable = (Observable<T>) tObservable
.subscribeOn(Schedulers.io())
.doOnSubscribe(new Action0() {
@Override
public void call() {
DialogHelper.showProgressDlg(context, mMessage);
}
})
.subscribeOn(AndroidSchedulers.mainThread())
.observeOn(AndroidSchedulers.mainThread())
.compose(RxLifecycle.bindUntilEvent(context.lifecycle(), ActivityEvent.STOP));
return observable;
}
};
}
上面这个方法出自本人的Community框架,用法和源码详见:RxHelper.java
在实际应用中,Transformer 经常和 Observable.compose() 一起使用。本人的Community框架也有使用,这里就不多介绍了。
在RxJava2.0中,Transformer划分的更加细致了,每一种“Observable”都对应的有自己的Transformer,相关API如下所示:
public interface ObservableTransformer<Upstream, Downstream> {
ObservableSource<Downstream> apply(Observable<Upstream> upstream);
}
public interface CompletableTransformer {
CompletableSource apply(Completable upstream);
}
public interface FlowableTransformer<Upstream, Downstream> {
Publisher<Downstream> apply(Flowable<Upstream> upstream);
}
public interface MaybeTransformer<Upstream, Downstream> {
MaybeSource<Downstream> apply(Maybe<Upstream> upstream);
}
public interface SingleTransformer<Upstream, Downstream> {
SingleSource<Downstream> apply(Single<Upstream> upstream);
}
这里以FlowableTransformer为例,创建一个Transformer调度器:
//子线程运行,主线程回调
public FlowableTransformer<T, T> io_main(final RxAppCompatActivity context) {
return new FlowableTransformer<T, T>() {
@Override
public Publisher<T> apply(Flowable<T> flowable) {
return flowable
.subscribeOn(Schedulers.io())
.doOnSubscribe(new Consumer<Subscription>() {
@Override
public void accept(Subscription subscription) throws Exception {
DialogHelper.showProgressDlg(context, mMessage);
}
})
.subscribeOn(AndroidSchedulers.mainThread())
.observeOn(AndroidSchedulers.mainThread())
.compose(RxLifecycle.<T, ActivityEvent>bindUntilEvent(context.lifecycle(), ActivityEvent.DESTROY));
}
};
}
上面这个方法出自本人的CommunityRxJava2框架,用法和源码详见:RxHelper.java
其他改变
doOnCancel/doOnDispose/unsubscribeOn
在1.x中,doOnUnsubscribe总是执行终端事件,因为SafeSubscriber调用了unsubscribe。这实际上是没有必要的。Reactive-Streams规范中,一个终端事件到达Subscriber,上游的Subscription会取消,因此调用 cancel()是一个空操作。
由于同样的原因unsubscribeOn也没被在终端路径上调用,但只有实际在链上调用cancel时,才会调用unsubscribeOn。
因此,下面的序列不会被调用
doOnCancel
Flowable.just(1,2,3)
.doOnCancel(new Action() {
@Override
public void run() throws Exception {
Log.e(TAG, " doOnCancel " );
}
})
.subscribe(new DisposableSubscriber<Integer>() {
@Override
public void onNext(Integer integer) {
Log.e(TAG, " onNext : " + integer);
}
@Override
public void onError(Throwable t) {
}
@Override
public void onComplete() {
Log.e(TAG, " onComplete isDisposed() = " + isDisposed());
}
});
输出结果如下:
onNext : 1
onNext : 2
onNext : 3
onComplete isDisposed() = false
然而,下面将会调用take操作符在传送过程中取消onNext
Flowable.just(1,2,3)
.doOnCancel(new Action() {
@Override
public void run() throws Exception {
Log.e(TAG, " doOnCancel " );
}
})
.take(2)
.subscribe(new DisposableSubscriber<Integer>() {
@Override
public void onNext(Integer integer) {
Log.e(TAG, " onNext : " + integer);
}
@Override
public void onError(Throwable t) {
}
@Override
public void onComplete() {
Log.e(TAG, " onComplete isDisposed() = " + isDisposed());
}
});
输出结果如下:
onNext : 1
onNext : 2
doOnCancel
onComplete isDisposed() = false
使用take操作符,调用了cancel方法,我们看一下take操作符的源码:
@CheckReturnValue
@BackpressureSupport(BackpressureKind.SPECIAL) // may trigger UNBOUNDED_IN
@SchedulerSupport(SchedulerSupport.NONE)
public final Flowable<T> take(long count) {
if (count < 0) {
throw new IllegalArgumentException("count >= 0 required but it was " + count);
}
return RxJavaPlugins.onAssembly(new FlowableTake<T>(this, count));
}
关键点就是这个FlowableTake类,这里限于篇幅的原因就不看源码了,大家可以自己看一下,然后找找是什么地方调用了cancel。
同样的,如果你需要在终端或者取消时执行清理,考虑使用using操作符代替。
以上就是RxJava2.0中的改动,下面我们重点介绍下RxJava2.0中的观察者模式。
RxJava2.0中的观察者模式
RxJava始终以观察者模式为骨架,在2.0中依然如此。
在RxJava2.0中,有五种观察者模式:
Observable/Observer
Flowable/Subscriber
Single/SingleObserver
Completable/CompletableObserver
Maybe/MaybeObserver
后面三种观察者模式差不多,Maybe/MaybeObserver
可以说是Single/SingleObserver
和Completable/CompletableObserver
的复合体。
下面列出这五个观察者模式相关的接口。
Observable/Observer
public abstract class Observable<T> implements ObservableSource<T>{...}
public interface ObservableSource<T> {
void subscribe(Observer<? super T> observer);
}
public interface Observer<T> {
void onSubscribe(Disposable d);
void onNext(T t);
void onError(Throwable e);
void onComplete();
}
Completable/CompletableObserver
//代表一个延迟计算没有任何价值,但只显示完成或异常。类似事件模式Reactive-Streams:onSubscribe(onError | onComplete)?
public abstract class Completable implements CompletableSource{...}
//没有子类继承Completable
public interface CompletableSource {
void subscribe(CompletableObserver cs);
}
public interface CompletableObserver {
void onSubscribe(Disposable d);
void onComplete();
void onError(Throwable e);
}
Flowable/Subscriber
public abstract class Flowable<T> implements Publisher<T>{...}
public interface Publisher<T> {
public void subscribe(Subscriber<? super T> s);
}
public interface Subscriber<T> {
public void onSubscribe(Subscription s);
public void onNext(T t);
public void onError(Throwable t);
public void onComplete();
}
Maybe/MaybeObserver
//Maybe类似Completable,它的主要消费类型是MaybeObserver顺序的方式,遵循这个协议:onSubscribe(onSuccess | onError | onComplete)
public abstract class Maybe<T> implements MaybeSource<T>{...}
public interface MaybeSource<T> {
void subscribe(MaybeObserver<? super T> observer);
}
public interface MaybeObserver<T> {
void onSubscribe(Disposable d);
void onSuccess(T t);
void onError(Throwable e);
void onComplete();
}
Single/SingleObserver
//Single功能类似于Observable,除了它只能发出一个成功的值,或者一个错误(没有“onComplete”事件),这个特性是由SingleSource接口决定的。
public abstract class Single<T> implements SingleSource<T>{...}
public interface SingleSource<T> {
void subscribe(SingleObserver<? super T> observer);
}
public interface SingleObserver<T> {
void onSubscribe(Disposable d);
void onSuccess(T t);
void onError(Throwable e);
}
其实从API中我们可以看到,每一种观察者都继承自各自的接口(都有一个共同的方法subscrib()),但是参数不一样),正是各自接口的不同,决定了他们功能不同,各自独立(特别是Observable和Flowable),同时保证了他们各自的拓展或者配套的操作符不会相互影响。
这里写图片描述下面我们重点说说在实际开发中经常会用到的两个模式:Observable/Observer和Flowable/Subscriber。
Observable/Observer
Observable正常用法:
Observable.create(new ObservableOnSubscribe<Integer>() {
@Override
public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
emitter.onNext(1);
emitter.onNext(2);
emitter.onComplete();
}
}).subscribe(new Observer<Integer>() {
@Override
public void onSubscribe(Disposable d) {
}
@Override
public void onNext(Integer integer) {
}
@Override
public void onError(Throwable e) {
}
@Override
public void onComplete() {
}
});
需要注意的是,这类观察模式不支持背压,下面我们具体分析下。
当被观察者快速发送大量数据时,下游不会做其他处理,即使数据大量堆积,调用链也不会报MissingBackpressureException,消耗内存过大只会OOM。
在测试的时候,快速发送了100000个整形数据,下游延迟接收,结果被观察者的数据全部发送出去了,内存确实明显增加了,遗憾的是没有OOM。
所以,当我们使用Observable/Observer的时候,我们需要考虑的是,数据量是不是很大(官方给出以1000个事件为分界线,供各位参考)。
Flowable/Subscriber
Flowable.range(0, 10)
.subscribe(new Subscriber<Integer>() {
Subscription subscription;
//当订阅后,会首先调用这个方法,其实就相当于onStart(),
//传入的Subscription s参数可以用于请求数据或者取消订阅
@Override
public void onSubscribe(Subscription s) {
Log.d(TAG, "onsubscribe start");
subscription = s;
subscription.request(1);
Log.d(TAG, "onsubscribe end");
}
@Override
public void onNext(Integer o) {
Log.d(TAG, "onNext--->" + o);
subscription.request(3);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onComplete() {
Log.d(TAG, "onComplete");
}
});
输出结果如下:
onsubscribe start
onNext--->0
onNext--->1
onNext--->2
onNext--->3
onNext--->4
onNext--->5
onNext--->6
onNext--->7
onNext--->8
onNext--->9
onComplete
onsubscribe end
Flowable是支持背压的,也就是说,一般而言,上游的被观察者会响应下游观察者的数据请求,下游调用request(n)来告诉上游发送多少个数据。这样避免了大量数据堆积在调用链上,使内存一直处于较低水平。
当然,Flowable也可以通过create()来创建:
Flowable.create(new FlowableOnSubscribe<Integer>() {
@Override
public void subscribe(FlowableEmitter<Integer> emitter) throws Exception {
emitter.onNext(1);
emitter.onNext(2);
emitter.onNext(3);
emitter.onComplete();
}
}, BackpressureStrategy.BUFFER);//指定背压策略
Flowable虽然可以通过create()
来创建,但是你必须指定背压的策略,以保证你创建的Flowable是支持背压的(这个在1.0的时候就很难保证,可以说RxJava2.0收紧了create()的权限)。
根据上面的代码的结果输出中可以看到,当我们调用subscription.request(n)
方法的时候,不等onSubscribe()
中后面的代码执行,就会立刻执行onNext方法,因此,如果你在onNext方法中使用到需要初始化的类时,应当尽量在subscription.request(n)
这个方法调用之前做好初始化的工作;
当然,这也不是绝对的,我在测试的时候发现,通过create()
自定义Flowable的时候,即使调用了subscription.request(n)
方法,也会等onSubscribe()
方法中后面的代码都执行完之后,才开始调用onNext。
平滑升级
RxJava1.x 如何平滑升级到RxJava2.0呢?
由于RxJava2.0变化较大无法直接升级,幸运的是,官方提供了RxJava2Interop这个库,可以方便地将RxJava1.x升级到RxJava2.0,或者将RxJava2.0转回RxJava1.x。
地址:https://github.com/akarnokd/RxJava2Interop
总结
可以明显的看到,RxJava2.0最大的改动就是对于backpressure的处理,为此将原来的Observable拆分成了新的Observable和Flowable,同时其他相关部分也同时进行了拆分。
除此之外,就是我们最熟悉和喜爱的RxJava。
网友评论