美文网首页
今日学术视野(2019.2.9)

今日学术视野(2019.2.9)

作者: ZQtGe6 | 来源:发表于2019-02-09 06:00 被阅读158次

    astro-ph.IM - 仪器仪表和天体物理学方法
    cs.AI - 人工智能
    cs.CL - 计算与语言
    cs.CV - 机器视觉与模式识别
    cs.DC - 分布式、并行与集群计算
    cs.HC - 人机接口
    cs.IR - 信息检索
    cs.IT - 信息论
    cs.LG - 自动学习
    cs.MA - 多代理系统
    cs.NE - 神经与进化计算
    cs.RO - 机器人学
    cs.SE - 软件工程
    cs.SI - 社交网络与信息网络
    eess.AS - 语音处理
    eess.IV - 图像与视频处理
    eess.SP - 信号处理
    math.OC - 优化与控制
    math.PR - 概率
    math.ST - 统计理论
    physics.data-an - 数据分析、 统计和概率
    physics.soc-ph - 物理学与社会
    quant-ph - 量子物理
    stat.AP - 应用统计
    stat.ME - 统计方法论
    stat.ML - (统计)机器学习

    • [astro-ph.IM]Attitude Control of an Inflatable Sailplane for Mars Exploration
    • [cs.AI]Agent-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in Angry Birds
    • [cs.AI]Augmenting Learning Components for Safety in Resource Constrained Autonomous Robots
    • [cs.AI]Distributed Synthesis of Surveillance Strategies for Mobile Sensors
    • [cs.AI]The Actor-Advisor: Policy Gradient With Off-Policy Advice
    • [cs.AI]Toward A Neuro-inspired Creative Decoder
    • [cs.CL]Aspect Specific Opinion Expression Extraction using Attention based LSTM-CRF Network
    • [cs.CL]Compression of Recurrent Neural Networks for Efficient Language Modeling
    • [cs.CL]End-to-end Anchored Speech Recognition
    • [cs.CL]Towards Autoencoding Variational Inference for Aspect-based Opinion Summary
    • [cs.CL]Understanding Chat Messages for Sticker Recommendation in Hike Messenger
    • [cs.CV]Advances on CNN-based super-resolution of Sentinel-2 images
    • [cs.CV]Beholder-GAN: Generation and Beautification of Facial Images with Conditioning on Their Beauty Level
    • [cs.CV]CHIP: Channel-wise Disentangled Interpretation of Deep Convolutional Neural Networks
    • [cs.CV]FDDB-360: Face Detection in 360-degree Fisheye Images
    • [cs.CV]Matrix Cofactorization for Joint Representation Learning and Supervised Classification -- Application to Hyperspectral Image Analysis
    • [cs.CV]Neural Inverse Knitting: From Images to Manufacturing Instructions
    • [cs.CV]Real-time 3D Traffic Cone Detection for Autonomous Driving
    • [cs.CV]Reversible GANs for Memory-efficient Image-to-Image Translation
    • [cs.CV]Single Network Panoptic Segmentation for Street Scene Understanding
    • [cs.CV]StampNet: unsupervised multi-class object discovery
    • [cs.CV]Theoretical analysis on Noise2Noise using Stein's Unbiased Risk Estimator for Gaussian denoising: Towards unsupervised training with clipped noisy images
    • [cs.CV]Unsupervised Data Uncertainty Learning in Visual Retrieval Systems
    • [cs.CV]Virtual Training for a Real Application: Accurate Object-Robot Relative Localization without Calibration
    • [cs.DC]Hop: Heterogeneity-Aware Decentralized Training
    • [cs.DC]PAI Data, Summary of the Project PAI Data Protocol
    • [cs.DC]Prospective Hybrid Consensus for Project PAI
    • [cs.DC]Random Gossip Processes in Smartphone Peer-to-Peer Networks
    • [cs.DC]Storm: a fast transactional dataplane for remote data structures
    • [cs.HC]Are Children Fully Aware of Online Privacy Risks and How Can We Improve Their Coping Ability?
    • [cs.IR]A Comparison of Information Retrieval Techniques for Detecting Source Code Plagiarism
    • [cs.IR]A Network-centric Framework for Auditing Recommendation Systems
    • [cs.IR]The few-get-richer: a surprising consequence of popularity-based rankings
    • [cs.IT]A Random Access G-Network: Stability, Stable Throughput, and Queueing Analysis
    • [cs.IT]Asymmetric Construction of Low-Latency and Length-Flexible Polar Codes
    • [cs.IT]Eigenvalue Based Detection of a Signal in Colored Noise: Finite and Asymptotic Analyses
    • [cs.IT]Massive MIMO Multicast Beamforming Via Accelerated Random Coordinate Descent
    • [cs.IT]Rank-metric codes
    • [cs.IT]Safeguarding Wireless Network with UAVs: A Physical Layer Security Perspective
    • [cs.LG]A Simple Baseline for Bayesian Uncertainty in Deep Learning
    • [cs.LG]Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
    • [cs.LG]Adversarial Domain Adaptation for Stance Detection
    • [cs.LG]Artificial Intelligence for Prosthetics - challenge solutions
    • [cs.LG]BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
    • [cs.LG]Bounds for the VC Dimension of 1NN Prototype Sets
    • [cs.LG]Centroid-based deep metric learning for speaker recognition
    • [cs.LG]Deeper & Sparser Exploration
    • [cs.LG]DiffEqFlux.jl - A Julia Library for Neural Differential Equations
    • [cs.LG]Effectiveness of LSTMs in Predicting Congestive Heart Failure Onset
    • [cs.LG]Fast Hyperparameter Tuning using Bayesian Optimization with Directional Derivatives
    • [cs.LG]Global Explanations of Neural Networks: Mapping the Landscape of Predictions
    • [cs.LG]Graph Classification with Recurrent Variational Neural Networks
    • [cs.LG]Hybrid Models with Deep and Invertible Features
    • [cs.LG]KLUCB Approach to Copeland Bandits
    • [cs.LG]Metaoptimization on a Distributed System for Deep Reinforcement Learning
    • [cs.LG]Negative eigenvalues of the Hessian in deep neural networks
    • [cs.LG]Neural Network Attributions: A Causal Perspective
    • [cs.LG]On the Variance of Unbiased Online Recurrent Optimization
    • [cs.LG]Online Clustering by Penalized Weighted GMM
    • [cs.LG]Principal Model Analysis Based on Partial Least Squares
    • [cs.LG]Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems
    • [cs.LG]Spatial Mixture Models with Learnable Deep Priors for Perceptual Grouping
    • [cs.LG]Speeding up scaled gradient projection methods using deep neural networks for inverse problems in image processing
    • [cs.LG]Temporal Convolutional Networks and Dynamic Time Warping can Drastically Improve the Early Prediction of Sepsis
    • [cs.LG]The role of a layer in deep neural networks: a Gaussian Process perspective
    • [cs.MA]CESMA: Centralized Expert Supervises Multi-Agents
    • [cs.NE]Investigating RNN Memory using Neuro-Evolution: Investigating Recurrent Neural Network Memory Structures using Neuro-Evolution
    • [cs.NE]Self-Adjusting Mutation Rates with Provably Optimal Success Rules
    • [cs.RO]Commodifying Pointing in HRI: Simple and Fast Pointing Gesture Detection from RGB-D Images
    • [cs.RO]Integer Programming as a General Solution Methodology for Path-Based Optimization in Robotics: Principles and Best Practices
    • [cs.SE]A Manually-Curated Dataset of Fixes to Vulnerabilities of Open-Source Software
    • [cs.SI]Modeling and Analysis of Tagging Networks in Stack Exchange Communities
    • [cs.SI]Red Bots Do It Better Comparative Analysis of Social Bot Partisan Behavior
    • [eess.AS]Conv-codes: Audio Hashing For Bird Species Classification
    • [eess.AS]End-to-end losses based on speaker basis vectors and all-speaker hard negative mining for speaker verification
    • [eess.IV]DoPAMINE: Double-sided Masked CNN for Pixel Adaptive Multiplicative Noise Despeckling
    • [eess.IV]SAPSAM - Sparsely Annotated Pathological Sign Activation Maps - A novel approach to train Convolutional Neural Networks on lung CT scans using binary labels only
    • [eess.SP]Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?
    • [math.OC]Momentum Schemes with Stochastic Variance Reduction for Nonconvex Composite Optimization
    • [math.OC]Predict Globally, Correct Locally: Parallel-in-Time Optimal Control of Neural Networks
    • [math.PR]On the asymptotic optimality of the comb strategy for prediction with expert advice
    • [math.PR]Subadditivity Beyond Trees and the Chi-Squared Mutual Information
    • [math.ST]Consistent Risk Estimation in High-Dimensional Linear Regression
    • [math.ST]Cramér Type Moderate Deviations for Random Fields
    • [math.ST]Estimation of smooth densities in Wasserstein distance
    • [math.ST]Tail behavior of dependent V-statistics and its applications
    • [math.ST]Weak consistency of the 1-nearest neighbor measure with applications to missing data and covariate shift
    • [physics.data-an]Field dynamics inference for local and causal interactions
    • [physics.soc-ph]Anti-modular nature of partially bipartite networks makes them infra small-world
    • [quant-ph]Entropy Bound for the Classical Capacity of a Quantum Channel Assisted by Classical Feedback
    • [stat.AP]Ensemble Prediction of Time to Event Outcomes with Competing Risks: A Case Study of Surgical Complications in Crohn's Disease
    • [stat.AP]Winning Is Not Everything: A contextual analysis of hockey face-offs
    • [stat.ME]Bias-Aware Confidence Intervals for Empirical Bayes Analysis
    • [stat.ME]Modeling microbial abundances and dysbiosis with beta-binomial regression
    • [stat.ML]A Bayesian Approach for Accurate Classification-Based Aggregates
    • [stat.ML]A Scale Invariant Flatness Measure for Deep Network Minima
    • [stat.ML]Concomitant Lasso with Repetitions (CLaR): beyond averaging multiple realizations of heteroscedastic noise
    • [stat.ML]Cost-Effective Incentive Allocation via Structured Counterfactual Inference
    • [stat.ML]Model Selection for Simulator-based Statistical Models: A Kernel Approach
    • [stat.ML]Radial and Directional Posteriors for Bayesian Neural Networks
    • [stat.ML]Random Matrix Improved Covariance Estimation for a Large Class of Metrics

    ·····································

    • [astro-ph.IM]Attitude Control of an Inflatable Sailplane for Mars Exploration
    Adrien Bouskela, Aman Chandra, Jekan Thangavelautham, Sergey Shkarayev
    http://arxiv.org/abs/1902.02083v2

    • [cs.AI]Agent-Based Adaptive Level Generation for Dynamic Difficulty Adjustment in Angry Birds
    Matthew Stephenson, Jochen Renz
    http://arxiv.org/abs/1902.02518v1

    • [cs.AI]Augmenting Learning Components for Safety in Resource Constrained Autonomous Robots
    Shreyas Ramakrishna, Abhishek Dubey, Matthew P Burruss, Charles Hartsell, Nagabhushan Mahadevan, Saideep Nannapaneni, Aron Laszka, Gabor Karsai
    http://arxiv.org/abs/1902.02432v1

    • [cs.AI]Distributed Synthesis of Surveillance Strategies for Mobile Sensors
    Suda Bharadwaj, Rayna Dimitrova, Ufuk Topcu
    http://arxiv.org/abs/1902.02393v1

    • [cs.AI]The Actor-Advisor: Policy Gradient With Off-Policy Advice
    Hélène Plisnier, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé
    http://arxiv.org/abs/1902.02556v1

    • [cs.AI]Toward A Neuro-inspired Creative Decoder
    Payel Das, Brian Quanz, Pin-Yu Chen, Jaw-wook Ahn
    http://arxiv.org/abs/1902.02399v1

    • [cs.CL]Aspect Specific Opinion Expression Extraction using Attention based LSTM-CRF Network
    Abhishek Laddha, Arjun Mukherjee
    http://arxiv.org/abs/1902.02709v1

    • [cs.CL]Compression of Recurrent Neural Networks for Efficient Language Modeling
    Artem M. Grachev, Dmitry I. Ignatov, Andrey V. Savchenko
    http://arxiv.org/abs/1902.02380v1

    • [cs.CL]End-to-end Anchored Speech Recognition
    Yiming Wang, Xing Fan, I-Fan Chen, Yuzong Liu, Tongfei Chen, Björn Hoffmeister
    http://arxiv.org/abs/1902.02383v1

    • [cs.CL]Towards Autoencoding Variational Inference for Aspect-based Opinion Summary
    Tai Hoang, Huy Le, Tho Quan
    http://arxiv.org/abs/1902.02507v1

    • [cs.CL]Understanding Chat Messages for Sticker Recommendation in Hike Messenger
    Abhishek Laddha, Mohamed Hanoosh, Debdoot Mukherjee
    http://arxiv.org/abs/1902.02704v1

    • [cs.CV]Advances on CNN-based super-resolution of Sentinel-2 images
    Massimiliano Gargiulo
    http://arxiv.org/abs/1902.02513v1

    • [cs.CV]Beholder-GAN: Generation and Beautification of Facial Images with Conditioning on Their Beauty Level
    Nir Diamant, Dean Zadok, Chaim Baskin, Eli Schwartz, Alex M. Bronstein
    http://arxiv.org/abs/1902.02593v1

    • [cs.CV]CHIP: Channel-wise Disentangled Interpretation of Deep Convolutional Neural Networks
    Xinrui Cui, Dan Wang, Z. Jane Wang
    http://arxiv.org/abs/1902.02497v1

    • [cs.CV]FDDB-360: Face Detection in 360-degree Fisheye Images
    Jianglin Fu, Saeed Ranjbar Alvar, Ivan V. Bajic, Rodney G. Vaughan
    http://arxiv.org/abs/1902.02777v1

    • [cs.CV]Matrix Cofactorization for Joint Representation Learning and Supervised Classification -- Application to Hyperspectral Image Analysis
    Adrien Lagrange, Mathieu Fauvel, Stéphane May, José Bioucas-Dias, Nicolas Dobigeon
    http://arxiv.org/abs/1902.02597v1

    • [cs.CV]Neural Inverse Knitting: From Images to Manufacturing Instructions
    Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr Kellnhofer, Jacqueline Aslarus, Wojciech Matusik
    http://arxiv.org/abs/1902.02752v1

    • [cs.CV]Real-time 3D Traffic Cone Detection for Autonomous Driving
    Ankit Dhall, Dengxin Dai, Luc Van Gool
    http://arxiv.org/abs/1902.02394v1

    • [cs.CV]Reversible GANs for Memory-efficient Image-to-Image Translation
    Tycho F. A. van der Ouderaa, Daniel E. Worrall
    http://arxiv.org/abs/1902.02729v1

    • [cs.CV]Single Network Panoptic Segmentation for Street Scene Understanding
    Daan de Geus, Panagiotis Meletis, Gijs Dubbelman
    http://arxiv.org/abs/1902.02678v1

    • [cs.CV]StampNet: unsupervised multi-class object discovery
    Joost Visser, Alessandro Corbetta, Vlado Menkovski, Federico Toschi
    http://arxiv.org/abs/1902.02693v1

    • [cs.CV]Theoretical analysis on Noise2Noise using Stein's Unbiased Risk Estimator for Gaussian denoising: Towards unsupervised training with clipped noisy images
    Magauiya Zhussip, Shakarim Soltanayev, Se Young Chun
    http://arxiv.org/abs/1902.02452v1

    • [cs.CV]Unsupervised Data Uncertainty Learning in Visual Retrieval Systems
    Ahmed Taha, Yi-Ting Chen, Teruhisa Misu, Abhinav Shrivastava, Larry Davis
    http://arxiv.org/abs/1902.02586v1

    • [cs.CV]Virtual Training for a Real Application: Accurate Object-Robot Relative Localization without Calibration
    Vianney Loing, Renaud Marlet, Mathieu Aubry
    http://arxiv.org/abs/1902.02711v1

    • [cs.DC]Hop: Heterogeneity-Aware Decentralized Training
    Qinyi Luo, Jinkun Lin, Youwei Zhuo, Xuehai Qian
    http://arxiv.org/abs/1902.01064v2

    • [cs.DC]PAI Data, Summary of the Project PAI Data Protocol
    Jincheng Du, Dan Fang, Mark Harvilla
    http://arxiv.org/abs/1902.02470v1

    • [cs.DC]Prospective Hybrid Consensus for Project PAI
    Mark Harvilla, Jincheng Du
    http://arxiv.org/abs/1902.02469v1

    • [cs.DC]Random Gossip Processes in Smartphone Peer-to-Peer Networks
    Calvin Newport, Alex Weaver
    http://arxiv.org/abs/1902.02763v1

    • [cs.DC]Storm: a fast transactional dataplane for remote data structures
    Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying Zhang, Haggai Eran, Liran Liss, Michael Wei, Dan Tsafrir, Marcos Aguilera
    http://arxiv.org/abs/1902.02411v1

    • [cs.HC]Are Children Fully Aware of Online Privacy Risks and How Can We Improve Their Coping Ability?
    Ge Wang, Jun Zhao, Nigel Shadbolt
    http://arxiv.org/abs/1902.02635v1

    • [cs.IR]A Comparison of Information Retrieval Techniques for Detecting Source Code Plagiarism
    Vasishtha Sriram Jayapati, Ajay Venkitaraman
    http://arxiv.org/abs/1902.02407v1

    • [cs.IR]A Network-centric Framework for Auditing Recommendation Systems
    Abhisek Dash, Animesh Mukherjee, Saptarshi Ghosh
    http://arxiv.org/abs/1902.02710v1

    • [cs.IR]The few-get-richer: a surprising consequence of popularity-based rankings
    Fabrizio Germano, Vicenç Gómez, Gaël Le Mens
    http://arxiv.org/abs/1902.02580v1

    • [cs.IT]A Random Access G-Network: Stability, Stable Throughput, and Queueing Analysis
    Ioannis Dimitriou, Nikolaos Pappas
    http://arxiv.org/abs/1902.02697v1

    • [cs.IT]Asymmetric Construction of Low-Latency and Length-Flexible Polar Codes
    Adam Cavatassi, Thibaud Tonnellier, Warren J. Gross
    http://arxiv.org/abs/1902.02402v1

    • [cs.IT]Eigenvalue Based Detection of a Signal in Colored Noise: Finite and Asymptotic Analyses
    Lahiru D. Chamain, Prathapasinghe Dharmawansa, Saman Atapattu, Chintha Tellambura
    http://arxiv.org/abs/1902.02483v1

    • [cs.IT]Massive MIMO Multicast Beamforming Via Accelerated Random Coordinate Descent
    Shuai Wang, Lei Cheng, Minghua Xia, Yik-Chung Wu
    http://arxiv.org/abs/1902.02447v1

    • [cs.IT]Rank-metric codes
    Elisa Gorla
    http://arxiv.org/abs/1902.02650v1

    • [cs.IT]Safeguarding Wireless Network with UAVs: A Physical Layer Security Perspective
    Qingqing Wu, Weidong Mei, Rui Zhang
    http://arxiv.org/abs/1902.02472v1

    • [cs.LG]A Simple Baseline for Bayesian Uncertainty in Deep Learning
    Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, Andrew Gordon Wilson
    http://arxiv.org/abs/1902.02476v1

    • [cs.LG]Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
    Tiago Ramalho, Marta Garnelo
    http://arxiv.org/abs/1902.02527v1

    • [cs.LG]Adversarial Domain Adaptation for Stance Detection
    Brian Xu, Mitra Mohtarami, James Glass
    http://arxiv.org/abs/1902.02401v1

    • [cs.LG]Artificial Intelligence for Prosthetics - challenge solutions
    Łukasz Kidziński, Carmichael Ong, Sharada Prasanna Mohanty, Jennifer Hicks, Sean F. Carroll, Bo Zhou, Hongsheng Zeng, Fan Wang, Rongzhong Lian, Hao Tian, Wojciech Jaśkowski, Garrett Andersen, Odd Rune Lykkebø, Nihat Engin Toklu, Pranav Shyam, Rupesh Kumar Srivastava, Sergey Kolesnikov, Oleksii Hrinchuk, Anton Pechenko, Mattias Ljungström, Zhen Wang, Xu Hu, Zehong Hu, Minghui Qiu, Jun Huang, Aleksei Shpilman, Ivan Sosin, Oleg Svidchenko, Aleksandra Malysheva, Daniel Kudenko, Lance Rane, Aditya Bhatt, Zhengfei Wang, Penghui Qi, Zeyang Yu, Peng Peng, Quan Yuan, Wenxin Li, Yunsheng Tian, Ruihan Yang, Pingchuan Ma, Shauharda Khadka, Somdeb Majumdar, Zach Dwiel, Yinyin Liu, Evren Tumer, Jeremy Watson, Marcel Salathé, Sergey Levine, Scott Delp
    http://arxiv.org/abs/1902.02441v1

    • [cs.LG]BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
    Asa Cooper Stickland, Iain Murray
    http://arxiv.org/abs/1902.02671v1

    • [cs.LG]Bounds for the VC Dimension of 1NN Prototype Sets
    Iain A. D. Gunn, Ludmila I. Kuncheva
    http://arxiv.org/abs/1902.02660v1

    • [cs.LG]Centroid-based deep metric learning for speaker recognition
    Jixuan Wang, Kuan-Chieh Wang, Marc Law, Frank Rudzicz, Michael Brudno
    http://arxiv.org/abs/1902.02375v1

    • [cs.LG]Deeper & Sparser Exploration
    Divya Grover, Christos Dimitrakakis
    http://arxiv.org/abs/1902.02661v1

    • [cs.LG]DiffEqFlux.jl - A Julia Library for Neural Differential Equations
    Chris Rackauckas, Mike Innes, Yingbo Ma, Jesse Bettencourt, Lyndon White, Vaibhav Dixit
    http://arxiv.org/abs/1902.02376v1

    • [cs.LG]Effectiveness of LSTMs in Predicting Congestive Heart Failure Onset
    Sunil Mallya, Marc Overhage, Navneet Srivastava, Tatsuya Arai, Cole Erdman
    http://arxiv.org/abs/1902.02443v1

    • [cs.LG]Fast Hyperparameter Tuning using Bayesian Optimization with Directional Derivatives
    Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh
    http://arxiv.org/abs/1902.02416v1

    • [cs.LG]Global Explanations of Neural Networks: Mapping the Landscape of Predictions
    Mark Ibrahim, Melissa Louie, Ceena Modarres, John Paisley
    http://arxiv.org/abs/1902.02384v1

    • [cs.LG]Graph Classification with Recurrent Variational Neural Networks
    Edouard Pineau, Nathan de Lara
    http://arxiv.org/abs/1902.02721v1

    • [cs.LG]Hybrid Models with Deep and Invertible Features
    Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan
    http://arxiv.org/abs/1902.02767v1

    • [cs.LG]KLUCB Approach to Copeland Bandits
    Nischal Agrawal, Prasanna Chaporkar
    http://arxiv.org/abs/1902.02778v1

    • [cs.LG]Metaoptimization on a Distributed System for Deep Reinforcement Learning
    Greg Heinrich, Iuri Frosio
    http://arxiv.org/abs/1902.02725v1

    • [cs.LG]Negative eigenvalues of the Hessian in deep neural networks
    Guillaume Alain, Nicolas Le Roux, Pierre-Antoine Manzagol
    http://arxiv.org/abs/1902.02366v1

    • [cs.LG]Neural Network Attributions: A Causal Perspective
    Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, Vineeth N Balasubramanian
    http://arxiv.org/abs/1902.02302v2

    • [cs.LG]On the Variance of Unbiased Online Recurrent Optimization
    Tim Cooijmans, James Martens
    http://arxiv.org/abs/1902.02405v1

    • [cs.LG]Online Clustering by Penalized Weighted GMM
    Shlomo Bugdary, Shay Maymon
    http://arxiv.org/abs/1902.02544v1

    • [cs.LG]Principal Model Analysis Based on Partial Least Squares
    Qiwei Xie, Liang Tang, Weifu Li, Vijay John, Yong Hu
    http://arxiv.org/abs/1902.02422v1

    • [cs.LG]Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems
    Chinmay S. Kulkarni
    http://arxiv.org/abs/1902.02719v1

    • [cs.LG]Spatial Mixture Models with Learnable Deep Priors for Perceptual Grouping
    Jinyang Yuan, Bin Li, Xiangyang Xue
    http://arxiv.org/abs/1902.02502v1

    • [cs.LG]Speeding up scaled gradient projection methods using deep neural networks for inverse problems in image processing
    Byung Hyun Lee, Se Young Chun
    http://arxiv.org/abs/1902.02449v1

    • [cs.LG]Temporal Convolutional Networks and Dynamic Time Warping can Drastically Improve the Early Prediction of Sepsis
    Michael Moor, Max Horn, Bastian Rieck, Damian Roqueiro, Karsten Borgwardt
    http://arxiv.org/abs/1902.01659v2

    • [cs.LG]The role of a layer in deep neural networks: a Gaussian Process perspective
    Oded Ben-David, Zohar Ringel
    http://arxiv.org/abs/1902.02354v1

    • [cs.MA]CESMA: Centralized Expert Supervises Multi-Agents
    Alex Tong Lin, Mark J. Debord, Katia Estabridis, Gary Hewer, Stanley Osher
    http://arxiv.org/abs/1902.02311v2

    • [cs.NE]Investigating RNN Memory using Neuro-Evolution: Investigating Recurrent Neural Network Memory Structures using Neuro-Evolution
    Alexander Ororbia, Ahmed Ahmed Elsaid, Travis Desell
    http://arxiv.org/abs/1902.02390v1

    • [cs.NE]Self-Adjusting Mutation Rates with Provably Optimal Success Rules
    Benjamin Doerr, Carola Doerr, Johannes Lengler
    http://arxiv.org/abs/1902.02588v1

    • [cs.RO]Commodifying Pointing in HRI: Simple and Fast Pointing Gesture Detection from RGB-D Images
    Bita Azari, Angelica Lim, Richard T. Vaughan
    http://arxiv.org/abs/1902.02636v1

    • [cs.RO]Integer Programming as a General Solution Methodology for Path-Based Optimization in Robotics: Principles and Best Practices
    Shuai D. Han, Jingjin Yu
    http://arxiv.org/abs/1902.02652v1

    • [cs.SE]A Manually-Curated Dataset of Fixes to Vulnerabilities of Open-Source Software
    Serena E. Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, Cédric Dangremont
    http://arxiv.org/abs/1902.02595v1

    • [cs.SI]Modeling and Analysis of Tagging Networks in Stack Exchange Communities
    Xiang Fu, Shangdi Yu, Austin R. Benson
    http://arxiv.org/abs/1902.02372v1

    • [cs.SI]Red Bots Do It Better Comparative Analysis of Social Bot Partisan Behavior
    Luca Luceri, Ashok Deb, Adam Badawy, Emilio Ferrara
    http://arxiv.org/abs/1902.02765v1

    • [eess.AS]Conv-codes: Audio Hashing For Bird Species Classification
    Anshul Thakur, Pulkit Sharma, Vinayak Abrol, Padmanabhan Rajan
    http://arxiv.org/abs/1902.02498v1

    • [eess.AS]End-to-end losses based on speaker basis vectors and all-speaker hard negative mining for speaker verification
    Hee-Soo Heo, Jee-weon Jung, IL-Ho Yang, Sung-Hyun Yoon, Hye-jin Shim, Ha-Jin Yu
    http://arxiv.org/abs/1902.02455v1

    • [eess.IV]DoPAMINE: Double-sided Masked CNN for Pixel Adaptive Multiplicative Noise Despeckling
    Sunghwan Joo, Sungmin Cha, Taesup Moon
    http://arxiv.org/abs/1902.02530v1

    • [eess.IV]SAPSAM - Sparsely Annotated Pathological Sign Activation Maps - A novel approach to train Convolutional Neural Networks on lung CT scans using binary labels only
    Mario Zusag, Sujal Desai, Marcello Di Paolo, Thomas Semple, Anand Shah, Elsa Angelini
    http://arxiv.org/abs/1902.02629v1

    • [eess.SP]Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?
    Alessio Zappone, Marco Di Renzo, Mérouane Debbah
    http://arxiv.org/abs/1902.02647v1

    • [math.OC]Momentum Schemes with Stochastic Variance Reduction for Nonconvex Composite Optimization
    Yi Zhou, Zhe Wang, Kaiyi Ji, Yingbin Liang, Vahid Tarokh
    http://arxiv.org/abs/1902.02715v1

    • [math.OC]Predict Globally, Correct Locally: Parallel-in-Time Optimal Control of Neural Networks
    Panos Parpas, Corey Muir
    http://arxiv.org/abs/1902.02542v1

    • [math.PR]On the asymptotic optimality of the comb strategy for prediction with expert advice
    Erhan Bayraktar, Ibrahim Ekren, Yili Zhang
    http://arxiv.org/abs/1902.02368v1

    • [math.PR]Subadditivity Beyond Trees and the Chi-Squared Mutual Information
    Emmanuel Abbe, Enric Boix-Adserà
    http://arxiv.org/abs/1902.02431v1

    • [math.ST]Consistent Risk Estimation in High-Dimensional Linear Regression
    Ji Xu, Arian Maleki, Kamiar Rahnama Rad
    http://arxiv.org/abs/1902.01753v2

    • [math.ST]Cramér Type Moderate Deviations for Random Fields
    Aleksandr Beknazaryan, Hailin Sang, Yimin Xiao
    http://arxiv.org/abs/1902.02723v1

    • [math.ST]Estimation of smooth densities in Wasserstein distance
    Jonathan Weed, Quentin Berthet
    http://arxiv.org/abs/1902.01778v2

    • [math.ST]Tail behavior of dependent V-statistics and its applications
    Yandi Shen, Fang Han, Daniela Witten
    http://arxiv.org/abs/1902.02761v1

    • [math.ST]Weak consistency of the 1-nearest neighbor measure with applications to missing data and covariate shift
    James Sharpnack
    http://arxiv.org/abs/1902.02408v1

    • [physics.data-an]Field dynamics inference for local and causal interactions
    Philipp Frank, Reimar Leike, Torsten A. Enßlin
    http://arxiv.org/abs/1902.02624v1

    • [physics.soc-ph]Anti-modular nature of partially bipartite networks makes them infra small-world
    Aradhana Singh, Md. Izhar Ashraf, Sitabhra Sinha
    http://arxiv.org/abs/1902.02668v1

    • [quant-ph]Entropy Bound for the Classical Capacity of a Quantum Channel Assisted by Classical Feedback
    Dawei Ding, Yihui Quek, Peter W. Shor, Mark M. Wilde
    http://arxiv.org/abs/1902.02490v1

    • [stat.AP]Ensemble Prediction of Time to Event Outcomes with Competing Risks: A Case Study of Surgical Complications in Crohn's Disease
    Michael C Sachs, Andrea Discacciati, Åsa Everhov, Ola Olén, Erin E Gabriel
    http://arxiv.org/abs/1902.02533v1

    • [stat.AP]Winning Is Not Everything: A contextual analysis of hockey face-offs
    Nick Czuzoj-Shulman, David Yu, Christopher Boucher, Luke Bornn, Mehrsan Javan
    http://arxiv.org/abs/1902.02397v1

    • [stat.ME]Bias-Aware Confidence Intervals for Empirical Bayes Analysis
    Nikolaos Ignatiadis, Stefan Wager
    http://arxiv.org/abs/1902.02774v1

    • [stat.ME]Modeling microbial abundances and dysbiosis with beta-binomial regression
    Bryan D. Martin, Daniela Witten, Amy D. Willis
    http://arxiv.org/abs/1902.02776v1

    • [stat.ML]A Bayesian Approach for Accurate Classification-Based Aggregates
    Q. A. Meertens, C. G. H. Diks, H. J. van den Herik, F W Takes
    http://arxiv.org/abs/1902.02412v1

    • [stat.ML]A Scale Invariant Flatness Measure for Deep Network Minima
    Akshay Rangamani, Nam H. Nguyen, Abhishek Kumar, Dzung Phan, Sang H. Chin, Trac D. Tran
    http://arxiv.org/abs/1902.02434v1

    • [stat.ML]Concomitant Lasso with Repetitions (CLaR): beyond averaging multiple realizations of heteroscedastic noise
    Quentin Bertrand, Mathurin Massias, Alexandre Gramfort, Joseph Salmon
    http://arxiv.org/abs/1902.02509v1

    • [stat.ML]Cost-Effective Incentive Allocation via Structured Counterfactual Inference
    Romain Lopez, Chenchen Li, Xiang Yan, Junwu Xiong, Michael I. Jordan, Yuan Qi, Le Song
    http://arxiv.org/abs/1902.02495v1

    • [stat.ML]Model Selection for Simulator-based Statistical Models: A Kernel Approach
    Takafumi Kajihara, Motonobu Kanagawa, Yuuki Nakaguchi, Kanishka Khandelwal, Kenji Fukumiziu
    http://arxiv.org/abs/1902.02517v1

    • [stat.ML]Radial and Directional Posteriors for Bayesian Neural Networks
    Changyong Oh, Kamil Adamczewski, Mijung Park
    http://arxiv.org/abs/1902.02603v1

    • [stat.ML]Random Matrix Improved Covariance Estimation for a Large Class of Metrics
    Malik Tiomoko, Florent Bouchard, Guillaume Ginholac, Romain Couillet
    http://arxiv.org/abs/1902.02554v1

    相关文章

      网友评论

          本文标题:今日学术视野(2019.2.9)

          本文链接:https://www.haomeiwen.com/subject/tkdasqtx.html