美文网首页
基于Python的中医藏象辨证量化诊断系统毕设全套

基于Python的中医藏象辨证量化诊断系统毕设全套

作者: 毕业设计论文资料 | 来源:发表于2022-05-19 11:38 被阅读0次

包含:毕业论文+开题报告+开题答辩PPT+毕业答辩PPT+项目源码 

摘 要

目的:本设计旨在深入研究深度学习、集成学习等机器学习理论,并应用相关算法开展中医藏象辨证量化诊断的创新研究和应用,在设计和实现AdaBoost、随机森林、卷积神经网络和谱聚类等应用广泛、表现优良的机器学习算法的基础上,搭建以算法为核心、集成数据采集、数据清洗、量化诊断、算法评估等功能模块的中医藏象辨证量化诊断的一体化平台。

方法:首先利用学校的中医院校资源优势,收集到来自中医院的7964条原始医案数据;其次编写脚本对医案进行基本清洗,再组织中医专业学生对症状、舌象、脉象和证型等数据项进行规范和标准化,再利用整理出来的数据项字典进行批量替换得到最终标准化医案样本;针对AdaBoost、随机森林、卷积神经网络和谱聚类等算法建立相应的模型,将样本处理成规范的特征向量输入到模型参与计算,调整模型参数,应用表现最优的参数在测试样本上评估;利用Flask开发框架、MySQL数据库和Echarts.js等组件,集成最优算法模型,基于MVC的开发模式以及面向对象的开发方法,实现中医藏象辨证量化诊断系统。

结果:基本清洗得到7518条有效医案,已规范700条医案,提取得到1871个症状特征、32个舌象特征、16个脉象特征以及50个证型标签;基于以上清洗结果,AdaBoost、随机森林、卷积神经网络和谱聚类等四种模型的以准确率为指标的最优表现分别为44.62%、47.59%、52.47%和39.28%。

结论:在医案数据未得到完全标准化、样本分布不均匀、模型大小受硬件条件约束的情况下,卷积神经网络在测试样本集上表现最佳,并且随着网络模型复杂程度提高而有明显提高,集成学习算法随着参数调整,表现在40%~50%间波动,谱聚类在无监督学习上的分类表现一般。在样本质量提高的基础上,各模型表现有望得到明显提高。

关键词:量化诊断;AdaBoost;随机森林;卷积神经网络;谱聚类;一体化平台

Abstract

Purpose: This design aims to deeply study machine learning theories such as deep learning and integrated learning, and apply relevant algorithms to carry out innovative research and application of TCM syndrome differentiation and diagnosis, design and implement AdaBoost, random forest, convolutional neural network and spectrum. Based on clustering and other well-performing machine learning algorithms, an integrated platform for syndrome differentiation and diagnosis of TCM Tibetan elephants with algorithmic core, integrated data acquisition, data cleaning, quantitative diagnosis, algorithm evaluation and other functional modules is built.

Methods: Firstly, 7946 original medical records from Chinese medicine hospitals were collected by using the resources of the Chinese medicine hospitals in the school. Secondly, scripts were used to basically clean the medical cases, and then the students of traditional Chinese medicine were organized to symptom, tongue, pulse and syndrome. The data items are standardized and standardized, and then the sorted data item dictionary is used for batch replacement to obtain the final standardized medical sample; the corresponding model is established for AdaBoost, random forest, convolutional neural network and spectral clustering algorithms, and the sample is processed. The normalized eigenvectors are input into the model to participate in the calculation, the model parameters are adjusted, and the parameters with the best performance are evaluated on the test samples. The components of the Flask development framework, MySQL database and Echarts.js are integrated to integrate the optimal algorithm model based on MVC. Development model and object-oriented development method to realize TCM syndrome differentiation and diagnosis system.

Results: Basic cleansing resulted in 7518 effective medical records, 700 medical records have been standardized, and 1871 symptom features, 32 tongue features, 16 pulse features and 50 syndrome tags were extracted. Based on the above cleaning results, AdaBoost, random The optimal performance of the four models of forest, convolutional neural network and spectral clustering were 44.62%, 47.59%, 52.47% and 39.28%, respectively.

Conclusion: The convolutional neural network performs best on the test sample set when the medical record data is not fully standardized, the sample distribution is not uniform, and the model size is constrained by hardware conditions, and it is obvious as the complexity of the network model increases. Improve, the integrated learning algorithm fluctuates between 40% and 50% with parameter adjustment, and the spectral clustering performance in unsupervised learning is general. On the basis of the improvement of sample quality, the performance of each model is expected to be significantly improved.

Key words: Quantitative diagnosis; AdaBoost; random forest; convolutional neural network; spectral clustering; integrated platform

目 录

1.绪论 

1.1项目背景 

1.2目的与意义 

1.3任务概述 

1.3.1设计目标 

1.3.2算法要求 

1.3.3平台特点 

2.相关技术简介 

2.1相关算法 

2.1.1 AdaBoost 

2.1.2随机森林 

2.1.3卷积神经网络 

2.1.4谱聚类 

2.2开发技术 

2.2.1前端技术——HTML+CSS+JavaScript 

2.2.2后端技术——MySQL+Flask 

2.2.3算法框架——TensorFlow+Scikit-learn 

3.中医藏象辨证量化诊断方法研究 

3.1数据准备 

3.1.1医案清洗 

3.1.2医案标准化 

3.2 AdaBoost算法建模 

3.2.1构造特征向量 

3.2.2构建决策树 

3.2.3 Boosting集成学习 

3.2.4算法评估 

3.3随机森林算法建模 

3.3.1构造特征向量 

3.3.2构建决策树 

3.3.3 Bagging集成学习 

3.3.4算法评估 

3.4卷积神经网络建模 

3.4.1构造特征向量 

3.4.2设计网络模型 

3.4.3 训练网络 

3.4.4模型评估与调参 

3.5谱聚类算法建模 

3.5.1构造特征向量 

3.5.2构建拉普拉斯矩阵 

3.5.3图切分与聚类 

3.5.4算法评估 

3.6算法总结与比较 

4.中医藏象智能诊断平台的设计与实现 

4.1系统总体架构 

4.2系统功能设计 

4.2.1医案录入 

4.2.2医案清洗 

4.2.3字典维护 

4.2.4量化诊断 

4.2.5结果展示 

4.2.6算法训练 

4.2.7算法评估 

4.3数据库设计 

4.3.1字典表 

4.3.2医案表 

4.3.3算法表 

4.3.4诊断表 

4.4系统功能展示 

4.4.1医案录入 

4.4.2医案清洗 

4.4.3字典维护 

4.4.4量化诊断 

4.4.5结果展示 

4.4.6算法训练 

4.4.7算法评估 

5.总结与展望 

5.1系统优点与特色 

5.2系统缺点与不足 

5.3系统完善思路与展望 

结束语 

致谢 

参考文献 

本文来自: 毕业作品网站(www.biyezuopin.vip) 详细出处参考:http://www.biyezuopin.vip/onews.asp?id=15991

相关文章

  • 基于Python的中医藏象辨证量化诊断系统毕设全套

    包含:毕业论文+开题报告+开题答辩PPT+毕业答辩PPT+项目源码 摘 要 目的:本设计旨在深入研究深度学习、集成...

  • 毕设毕设

    最近某些人又要被逼疯了。 因为一个两个字的东西,“毕设”,最近全宿舍都在每天做毕设,因为要交稿的日期将近。 每当截...

  • 光明中医网校学员中医自学笔记分享——绪论

    中医学是以阴阳五行学说、藏象经络学说、气血津液学说为基础,以整体观为主导思想,以辨证论治为诊疗特点,研究人体生理、...

  • 中医二羊总结,熟记这些口诀可快速学会临床辨证

    都说中医的精髓在辨证,辨证到底辨别是什么呢? 初学中医的朋友往往得不到要领,都说中医辨证太难,其实是连最基本的中医...

  • 光明中医网校学员中医自学笔记分享——藏象学说

    阴阳五行学说是整体观,是阴阳辨证,是五行联系,是阴阳五行的动态平衡,确立了中医的理论基础。那么,藏象学说就是具体利...

  • 毕设思路

    毕设题目:多标记分类识别工具包开发及应用系统实现 本课题基于MATLAB和/或Python编程实现多种多标记分类算...

  • Python发布自己的程序

    毕设里面包含了几个Python程序,为了让后同的人可以方便使用或者更好地进行再次开发,基于在PyPi上发布pack...

  • pythonGUI教程(一)

    0 .前言 最近要忙毕设了,毕设要用到到python,所以不如借着这个机会写写自己在用python的一些功能吧,本...

  • 深度学习neural-style环境搭建

    背景:最近在紧锣密鼓的搞毕设,毕设项目是《基于微信公众号的DNN图片数据处理服务》。现在首要任务是让这个服务的示例...

  • 无标题文章

    毕设啊毕设,你真是一只磨人的小妖精 为你操碎心,被你折磨的不行 开题报告 文献综述 外文翻译基于webpack的M...

网友评论

      本文标题:基于Python的中医藏象辨证量化诊断系统毕设全套

      本文链接:https://www.haomeiwen.com/subject/tkktprtx.html