In 2016 Kapahi's lab published a study in Cell Metabolism showing that fruit flies on a restricted diet had significant changes in their circadian rhythms in addition to extending lifespan. When Hodge joined the lab later that year, he wanted to dig deeper to figure out which processes that enhance circadian functions were altered by the diet change, and whether circadian processes were required for the longer lifespan seen with dietary restriction.
"The fruit fly has such a short lifespan, making it a really beautiful model that allows us to screen a lot of things at once," said Hodge, who is currently a scientist at Fountain Therapeutics in South San Francisco. The study began with a broad survey to see what genes oscillate in a circadian fashion when flies on an unrestricted diet were compared with those fed just 10 percent of the protein of the unrestricted diet.
Immediately, Hodge noticed numerous genes that were both diet-responsive and also exhibiting ups and downs at different time points, or "rhythmic." He then discovered that the rhythmic genes that were activated the most with dietary restriction all seemed to be coming from the eye, specifically from photoreceptors, the specialized neurons in the retina of the eye that respond to light.
网友评论