美文网首页
实体识别NRE

实体识别NRE

作者: 潇萧之炎 | 来源:发表于2019-06-10 08:43 被阅读0次
    1. 运行main.py 修改config_file
    2. flask部署 app = Flask(name)
    3. 查看example.train 结合文档
    4. utils.py data_utils.py get_seg_feature result_to_json(BOEIS)
    5. 运行gen_data.py根据字典产生训练、测试集
    6. deploy是打包好的训练文件,单独本地部署
    7. 运行main2.py 训练数据

    main2是训练的,main是测试的
    example.train文档是双标签,该文档位置词标注是对的,但是实体词有问题,所以效果不好
    双 B-REG : B是位置标签,REG是实体标签,所以是双标签,BIO标和BIOES标是一样的 O代表other
    X值是:双,Y值是:B-REG双标签
    如何做IDS化,即 转化为数值,计算机只能识别数值
    X值IDS化:(1)可以通过统计词频,把排在靠前的索引比较小来代表文字;(2)或者通过word2vec转化为一个向量
    Y值IDS化:有个tag_to_id文档,通过正反向字典
    注意:做实体识别的时候,x不是一个数值,而是一个词向量,这是跟聊天机器人不同的地方,已经训练好了,在 NERuselocal\data\vec.txt中
    每个字,即便是,也要转化为100维的向量,输入到模型中的时候,x值就要查这个字典,把对应的向量输入进去。y的话,也要查tag_to_id字典去输出

    id_to_tag.txt和id_to_tag.txt是正反向字典
    vec.txt是词向量,每个都是100维的,即时是一个逗号。
    与聊天机器人不同的地方,之前每个字是转化为数值,这里是转化为向量
    只要不是函数的,就会从上往下去运行,运行到def()就会跳过,到最后运行main函数

    双向lstm或IdCNN模型,找到x,y. y是双标签,x是文字word2vec映射成的词向量。

    如何拟合x.y:拟合之前第一步提取x的特征,用BiLstm或idCNN对x做特征提取,+分类器(crf条件随机场)

    BiLstm or idCNN + crf

    idCNN与cnn的区别是,idCNN的卷积核是扁的:一句话每个字映射成一个向量,找一句话之间的关系可以用扁的,

    只需要找一句话前后之间的关系,不需要找上下文之间的关系

    好处:可以有效地抗噪音:完形填空时,扁的卷积核它只会扫当前这句话,不会把上下文卷进来,抗的是上下文的躁

    CNN和RNN本质上没有太大差别,都是把局部的相关性体现出来,CNN体现在空间上,RNN体现在时间时序上

    crf:条件随机场。跟rnn很类似,提供了一个分类结果,当然它也可以做特征提取。

    它的分类需要算一个联合概率,用先验概率除以联合概率,得到后验概率

    第一步,找到x,y

    第二步,对x做特征提取、特征工程(之前所有的resnet等都是为特征工程服务的),对y做one_hot向量(或二分类,训练多个svm)

    第三步,去拟合,分类

    Cnn、RNN、resNet、googleNet都是为特征工程做准备的

    Model.py脚本:
    log_likelihood, self.trans = crf_log_likelihood(
    #likelihood似然,一般加似然的就是损失函数,已经封装好了,直接代入y^:logits和y:targets值,然后取负号,再求平均
    inputs=logits,
    tag_indices=targets,
    transition_params=self.trans,
    sequence_lengths=lengths+1)
    return tf.reduce_mean(-log_likelihood)

    Loader脚本:

    X也是双标签的:
    flags.DEFINE_integer("seg_dim", 20, "Embedding size for segmentation, 0 if not used")# embeding的增维

    因为Y是双标签,所以x也要用双标签来标注。BIOS是标注y的,不是x

    每个文字有两重信息:1.文字本身的100字向量

    2.位置信息:20维(用0、1、2、3四个数类似地代替BIOS来标记位置信息,同时将0100四维增维到20维表示位置)

    ,急性呼吸道感染

    0 1 2 2 2 2 2 3 逗号是0,开头是1,结尾是3,中间全是2

    比如x急是0100四维,全连接20维,再加上原来的100维,100+20=120维。20就是做位置词的Embedding,用120维来代替一个字x的输入

    flags.DEFINE_integer("char_dim", 100, "Embedding size for characters")#字的维度

    模型保存目录

    flags.DEFINE_string("ckpt_path", "ckpt", "Path to save model") #保存模型的路径,每次训练下一个,之前的就被清理掉了

    调参:
    main_test中的参数并不是最优的,需要通过做实验训练来调参,才能验算精确率,机器学习调参不需要这么麻烦,因为机器学习样本量有限,不超过30、50M

    从main_test.py开始加载utils的create_model方法,然后再走到model.py中
    model = create_model()
    model.py类讲完了,就返回到utils.py的create_model中去

    相关文章

      网友评论

          本文标题:实体识别NRE

          本文链接:https://www.haomeiwen.com/subject/tlkaxctx.html