话不多说,直接上代码
import java.util.LinkedList;
import java.util.Queue;
public class BaseTree {
public static void main(String[] args) {
TreeNode treeNode = buildTreeNode(2);
TreeOperation.beautifulShow(treeNode);
System.out.println("<==============深度优先遍历==============>");
deepShow(treeNode);
System.out.println("<==============广度优先便利==============>");
spanShow(treeNode);
}
protected static class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
protected static TreeNode buildTreeNode(int level){
int i = 1;
TreeNode treeNode = new TreeNode(i++);
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(treeNode);
int size = 1;
while (level-- > 0) {
size *= 2;
}
while (--size > 0) {
TreeNode poll = queue.poll();
poll.left = new TreeNode(i++);
poll.right = new TreeNode(i++);
queue.offer(poll.left);
queue.offer(poll.right);
}
return treeNode;
}
protected static void deepShow(TreeNode treeNode) {
StringBuffer a1 = new StringBuffer();
StringBuffer a2 = new StringBuffer();
StringBuffer a3 = new StringBuffer();
show(treeNode, a1, a2, a3);
System.out.println("前序遍历: " + a1);
System.out.println("中序遍历: " + a2);
System.out.println("后序遍历: " + a3);
}
private static void show(TreeNode treeNode, StringBuffer a1, StringBuffer a2, StringBuffer a3){
if (treeNode == null) {
return;
}
a1.append(treeNode.val).append(" ");
show(treeNode.left, a1, a2, a3);
a2.append(treeNode.val).append(" ");
show(treeNode.right, a1, a2, a3);
a3.append(treeNode.val).append(" ");
}
private static void spanShow(TreeNode treeNode){
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(treeNode);
System.out.print("广度遍历: ");
while (!queue.isEmpty()) {
TreeNode poll = queue.poll();
if (poll == null) {
continue;
}
System.out.print(poll.val + " ");
queue.offer(poll.left);
queue.offer(poll.right);
}
}
public static class TreeOperation {
/*
树的结构示例:
1
/ \
2 3
/ \ / \
4 5 6 7
*/
// 用于获得树的层数
public static int getTreeDepth(TreeNode root) {
return root == null ? 0 : (1 + Math.max(getTreeDepth(root.left), getTreeDepth(root.right)));
}
private static void writeArray(TreeNode currNode, int rowIndex, int columnIndex, String[][] res, int treeDepth) {
// 保证输入的树不为空
if (currNode == null) {return;}
// 先将当前节点保存到二维数组中
res[rowIndex][columnIndex] = String.valueOf(currNode.val);
// 计算当前位于树的第几层
int currLevel = ((rowIndex + 1) / 2);
// 若到了最后一层,则返回
if (currLevel == treeDepth) {return;}
// 计算当前行到下一行,每个元素之间的间隔(下一行的列索引与当前元素的列索引之间的间隔)
int gap = treeDepth - currLevel - 1;
// 对左儿子进行判断,若有左儿子,则记录相应的"/"与左儿子的值
if (currNode.left != null) {
res[rowIndex + 1][columnIndex - gap] = "/";
writeArray(currNode.left, rowIndex + 2, columnIndex - gap * 2, res, treeDepth);
}
// 对右儿子进行判断,若有右儿子,则记录相应的"\"与右儿子的值
if (currNode.right != null) {
res[rowIndex + 1][columnIndex + gap] = "\\";
writeArray(currNode.right, rowIndex + 2, columnIndex + gap * 2, res, treeDepth);
}
}
public static void beautifulShow(TreeNode root) {
if (root == null) {System.out.println("EMPTY!");}
// 得到树的深度
int treeDepth = getTreeDepth(root);
// 最后一行的宽度为2的(n - 1)次方乘3,再加1
// 作为整个二维数组的宽度
int arrayHeight = treeDepth * 2 - 1;
int arrayWidth = (2 << (treeDepth - 2)) * 3 + 1;
// 用一个字符串数组来存储每个位置应显示的元素
String[][] res = new String[arrayHeight][arrayWidth];
// 对数组进行初始化,默认为一个空格
for (int i = 0; i < arrayHeight; i ++) {
for (int j = 0; j < arrayWidth; j ++) {
res[i][j] = " ";
}
}
// 从根节点开始,递归处理整个树
// res[0][(arrayWidth + 1)/ 2] = (char)(root.val + '0');
writeArray(root, 0, arrayWidth/ 2, res, treeDepth);
// 此时,已经将所有需要显示的元素储存到了二维数组中,将其拼接并打印即可
for (String[] line: res) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < line.length; i ++) {
sb.append(line[i]);
if (line[i].length() > 1 && i <= line.length - 1) {
i += line[i].length() > 4 ? 2: line[i].length() - 1;
}
}
System.out.println(sb.toString());
}
}
}
}
执行结果
1
/ \
2 3
/ \ / \
4 5 6 7
<==============深度优先遍历==============>
前序遍历: 1 2 4 5 3 6 7
中序遍历: 4 2 5 1 6 3 7
后序遍历: 4 5 2 6 7 3 1
<==============广度优先便利==============>
广度遍历: 1 2 3 4 5 6 7
网友评论