美文网首页绘图
R:层次聚类分析-dist、hclust、heatmap等

R:层次聚类分析-dist、hclust、heatmap等

作者: 小米羊爱学术 | 来源:发表于2019-03-06 09:48 被阅读0次

1、常规聚类过程:

(2)首先用dist()函数计算变量间距离

dist.r = dist(data, method=" ") 

其中method包括6种方法,表示不同的距离测度:"euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"。相应的意义自行查找。

(2)再用hclust()进行聚类

hc.r = hclust(dist.r, method = “ ”) 

其中method包括7种方法,表示聚类的方法:"ward", "single", "complete","average", "mcquitty", "median" or "centroid"。相应的意义自行查找。

(3)画图

plot(hc.r, hang = -1,labels=NULL) 或者plot(hc.r, hang = 0.1,labels=F)

hang 等于数值,表示标签与末端树杈之间的距离,

若是负数,则表示末端树杈长度是0,即标签对齐。

labels 表示标签,默认是NULL,表示变量原有名称。labels=F :表示不显示标签。

2、热图聚类过程:

(1)首先用dist()函数计算变量间距离

dist.r = dist(data, method=" ")

(2)用heatmap()函数进行热点图聚类

对于heatmap中具体参数,这里不做过多介绍,可在帮助文档中找说明。除此heatmap函数之外,gplots包中的heatmap.2()函数,也可以做热点图聚类。

heatmap(as.matrix(dist.r))

3、多维标度和聚类的结果:

MDS方法对距离矩阵进行降维,用不同的颜色来表示聚类的结果。

dist.r = dist(data, method=" ")

hc.r = hclust(dist.r)

#cutree函数提取每个样本所属的类别

result = cutree(hc.r,k=4)

#cmdscale数据降维

temp = cmdscale(dist.r, k=2)

x = temp[,1]

y = temp[,2]

#作图

library(ggplot2)

p = ggplot(data.frame(x,y),aes(x,y))

p+geom_point(size=3,alpha=0.8,aes(colour = factor(result)))

相关文章

网友评论

    本文标题:R:层次聚类分析-dist、hclust、heatmap等

    本文链接:https://www.haomeiwen.com/subject/towzuqtx.html