记录自己的学习过程. 共勉.
本次分析的FutureTask源码是基于jdk8的.
一、类继承关系图
分析FutureTask之前,我们先来看看这个类的关系图.它最终是实现了Runnable和Future接口,大概能猜测FutureTask是一个执行线程的实现类并且是有结果的.

二、FutureTask 成员变量
我们来看FutureTask源码,首先关注一下它的成员变量.
// FutureTask的状态.
private volatile int state;
/** The underlying callable; nulled out after running */
// 具体执行的任务,初始化时由caller指定.
private Callable<V> callable;
/** The result to return or exception to throw from get() */
/** FutureTask任务的执行结果,可能是Exception*/
private Object outcome; // non-volatile, protected by state reads/writes
/** The thread running the callable; CASed during run() */
/** 执行task的线程,只允许一个线程执行.*/
private volatile Thread runner;
/** Treiber stack of waiting threads */
/** 等待task结果的线程栈[Treiber stack算法]*/
private volatile WaitNode waiters;
(1) FutureTask 状态变化
我认为status成员变量是FutureTask中的一个核心,FutureTask中的设计思路基于status的状态转换,从这个思路入手比较清晰.
/** The run state of this task, initially NEW. The run state
* transitions to a terminal state only in methods set,
* setException, and cancel. During completion, state may take on
* transient values of COMPLETING (while outcome is being set) or
* INTERRUPTING (only while interrupting the runner to satisfy a
* cancel(true)). Transitions from these intermediate to final
* states use cheaper ordered/lazy writes because values are unique
* and cannot be further modified.
*
* Possible state transitions:
* 任务从新建 -> 执行完成 -> 正常或异常结束
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* 任务从新建 -> 取消
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
<!-- COMPLETING状态能不能取消? -->
private volatile int state;
二、状态流转分析
(1) 我们根据statsu的状态流转结合源码进行分析.首先看 NEW -> COMPLETING -> NORMAL,这是一个正常的从task的创建,执行到完成的过程.
a、先看task的创建.
/**
* Creates a {@code FutureTask} that will, upon running, execute the
* given {@code Callable}.
*
* @param callable the callable task
* @throws NullPointerException if the callable is null
*/
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
/**
* Creates a {@code FutureTask} that will, upon running, execute the
* given {@code Runnable}, and arrange that {@code get} will return the
* given result on successful completion.
*
* @param runnable the runnable task
* @param result the result to return on successful completion. If
* you don't need a particular result, consider using
* constructions of the form:
* {@code Future<?> f = new FutureTask<Void>(runnable, null)}
* @throws NullPointerException if the runnable is null
*/
public FutureTask(Runnable runnable, V result) {
// 利用Executors.callable把runnable 包装成callable,并且自定义result,线程是没有返回值的.
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
任务新建时,status状态是NEW.
b、我们再看实际执行任务的方法,run().(ps:FutureTask本身就是实现了runnable接口)
public void run() {
// 只有status状态是NEW状态的task才能执行,设置执行task的线程为当前线程.
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
// double check,其他线程会调用cancel(),希望取消任务执行.
if (c != null && state == NEW) {
V result;
boolean ran;
try {
// 这是真正执行task的代码,只是调用了一下call()方法
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
// 如果任务执行异常,捕获其中抛出的异常信息,修改task的状态为EXCEPTIONAL.并唤醒等待线程.
setException(ex);
}
if (ran)
// 如果任务顺利执行完成,调用set(result)方法,修改其task状态为NORMAL,并唤醒等待线程.
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
set(v)和set(throwable)分别将status设置成了最终的NORMAL和EXCEPTIONAL状态.
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
}
(2) 上面其实已经分析了 NEW -> COMPLETING -> NORMAL 和 NEW -> COMPLETING -> EXCEPTIONAL 两种情况.接下来,我们聊一聊 NEW -> CANCELLED 和 NEW -> INTERRUPTING -> INTERRUPTED.
a、这两个case都是为了 取消任务.
/**
* @param mayInterruptIfRunning 是否中断线程,cancel方法会尝试去中断线程,如果你的callable支持中断.
*/
public boolean cancel(boolean mayInterruptIfRunning) {
// 根据mayInterruptIfRunning判断是直接取消,还是尝试去中断线程.
if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
try { // in case call to interrupt throws exception
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
// 尝试去中断线程,但是具体还是看callable是否支持中断.
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
} finally {
finishCompletion();
}
return true;
}
三、执行结果分析
a、客户端调用get()方法准备获取结果,若任务已完成则直接返回结果,若任务未完成,则阻塞直到任务完成,由任务线程唤醒,或者超时抛出异常.
/**
* @throws CancellationException {@inheritDoc}
*/
public V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
if (s <= COMPLETING &&
// awaitDone()如果任务没有完成、取消或者中断,等待结果
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
}
get()主要是调用了awaitDone()方法查询结果.
/**
* Awaits completion or aborts on interrupt or timeout.
*
* @param timed true if use timed waits
* @param nanos time to wait, if timed
* @return state upon completion
*/
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
// FutureTask支持中断.
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
// 任务已经完成
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
// 任务马上完成.
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
// 加入到栈中等待
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
// 阻塞直到超时,或者任务执行完成,唤醒当前线程.
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
b、我们再来看唤醒等待线程的方法finishCompletion(), 在任务执行完成设置结果时触发, 在状态流转分析小节已经说明了.
/**
* Removes and signals all waiting threads, invokes done(), and
* nulls out callable.
*/
private void finishCompletion() {
// assert state > COMPLETING; 考虑并发情况,第一层循环.
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t); // 唤醒阻塞的等待线程.
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
// 钩子,子类可以自定义. 比如在ExecutorCompletionService类中,利用done()钩子方法把执行完成的task offer到blockingqueue中.
done();
callable = null; // to reduce footprint 帮助gc
}
c、等待线程被唤醒之后, 在awaitDone()方法中都会调用removeWaiter(q)移除当前的等待线程节点.
/**
* Tries to unlink a timed-out or interrupted wait node to avoid
* accumulating garbage. Internal nodes are simply unspliced
* without CAS since it is harmless if they are traversed anyway
* by releasers. To avoid effects of unsplicing from already
* removed nodes, the list is retraversed in case of an apparent
* race. This is slow when there are a lot of nodes, but we don't
* expect lists to be long enough to outweigh higher-overhead
* schemes.
* 这其实是一个并发情况下利用cas对链表删除节点的操作.
*/
private void removeWaiter(WaitNode node) {
if (node != null) {
node.thread = null;
retry:
for (;;) { // restart on removeWaiter race
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
if (q.thread != null)
pred = q;
else if (pred != null) {
pred.next = s;
if (pred.thread == null) // check for race
continue retry;
}
else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
q, s))
continue retry;
}
break;
}
}
}
网友评论