美文网首页
TensorFlow Develop

TensorFlow Develop

作者: 我是谁的小超人 | 来源:发表于2017-10-20 21:05 被阅读0次

    MNIST For ML Beginners

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    minist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    x = tf.placeholder(tf.float32, [None, 784])
    y_ = tf.placeholder(tf.float32, [None, 10])
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    y = tf.nn.softmax(tf.matmul(x, W) + b)
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    sess = tf.InteractiveSession()
    tf.global_variables_initializer().run()
    for i in range(1000):
        batch_xs, batch_ys = minist.train.next_batch(100)
        sess.run(train_step, feed_dict={x:batch_xs, y_:batch_ys})
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print(sess.run(accuracy, feed_dict={x:minist.test.images, y_:minist.test.labels}))
    

    Deep MNIST for Experts

    第一部分:单层神经网络

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    sess = tf.InteractiveSession()
    
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder(tf.float32, shape=[None, 10])
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    sess.run(tf.global_variables_initializer())
    y = tf.matmul(x, W) + b
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    for i in range(1000):
        batch = mnist.train.next_batch(100)
        train_step.run(feed_dict={x:batch[0], y_:batch[1]})
    
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print(accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels}))
    

    第二部分:多层卷积神经网络

    """
    Input: x = [N, 28, 28, 1]
    1) First Convolutional Layer:
    W1 = [5, 5, 1, 32]
    b1 = [32]
    h1 = pooling(relu(conv(x, W1) + b1))
    feature map = [N, 14, 14, 32]
    2) Second Convolutional Layer:
    W2 = [5, 5, 32, 64]
    b2 = [64]
    h2 = pooling(relu(conv(h1, W2), b2))
    feature map = [N, 7, 7, 64]
    3) Densely Connected Layer
    h2_flat = [N, 7*7*64]
    W_fc = [7*7*64, 1024]
    b_fc = [1024]
    h_fc1 = relu(h2_plat * W_fc + b_fc)
    feature map = [N, 1024]
    4) Dropout
    h_fc1_drop = dropout(h_fc1)
    feature map = [N, 1024]
    5) Readout Layer
    w_fc2 = [1024, 10]
    b_fc2 = [10]
    y_conv = h2_plat * W_fc + b_fc
    feature map = [N, 10]
    """
    
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    sess = tf.InteractiveSession()
    
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder(tf.float32, shape=[None, 10])
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], 
                              padding='SAME')
    
    # First Convolutional Layer
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    # Second Convolutional Layer
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    # Densely Connected Layer
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    # Dropout
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    # Readout Layer
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
                      
    # Train and Evaluate the model
    cross_entropy = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(20000):
            batch = mnist.train.next_batch(50)
            if i % 100 == 0:
                train_accuracy = accuracy.eval(feed_dict={
                        x: batch[0], y_: batch[1], keep_prob: 1.0})
                print('step %d, training accuracy %g' % (i, train_accuracy))
            
            train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
        print('test accuracy %g' % accuracy.eval(feed_dict={
                x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    

    TensorFlow Mechanics 101

    相关文章

      网友评论

          本文标题:TensorFlow Develop

          本文链接:https://www.haomeiwen.com/subject/tpqbuxtx.html