在上一篇 Retrofit 学习第三弹—源码分析篇 分析了 Retrofit 的源码,分析到请求 Call 位置,是调用的 okhttp3 中的 OkHttpClient 来完成请求的,所以 Retrofit 是基于 okhttp3 的一个封装,通过注解来设定参数构造出 Request,然后通过 OkHttpClient 创建 Call 实例。下面就来分析下 okhttp3 的流程。
1. okhttp 使用回顾
简单看下 okhttp Get 的请求过程:
public static String request(String url) throws IOException {
// 构建 OkHttpClient
OkHttpClient client = genericClient(headMaps);
//新建一个 Request 对象
Request request = new Request.Builder()
.url(url)
.build();
// 同步请求
Response response = client.newCall(request).execute();
if (response.isSuccessful()) {
return response.body().string();
}else{
throw new IOException("Unexpected code " + response);
}
}
// 构建 OkHttpClient 实例
private static OkHttpClient genericClient(Map<String, String> headMaps) {
// HttpLoggingInterceptor
HttpLoggingInterceptor httpLoggingInterceptor = new HttpLoggingInterceptor(
new HttpLoggingInterceptor.Logger() {
@Override
public void log(String message) {
LogUtil.d("httpInfo", message);
}
}
);
httpLoggingInterceptor.setLevel(HttpLoggingInterceptor.Level.BODY);
OkHttpClient httpClient = new OkHttpClient.Builder()
// 添加 header 信息
.addInterceptor(new Interceptor() {
@Override
public Response intercept(Chain chain) throws IOException {
Request.Builder newBuilder = chain.request().newBuilder();
if (headMaps != null && !headMaps.isEmpty()) {
newBuilder.headers(Headers.of(headMaps));
}
return chain.proceed(newBuilder.build());
}
})
// 添加 log 打印
.addNetworkInterceptor(httpLoggingInterceptor)
// 连接超时时间
.connectTimeout(60, TimeUnit.SECONDS)
// 读取超时时间
.readTimeout(60 * 30, TimeUnit.SECONDS)
// 写入超时时间
.writeTimeout(60 * 30, TimeUnit.SECONDS)
.build();
return httpClient;
}
以上就是 OkHttpClient 构建后,完成 get 同步请求的一个过程,包括通过 OkHttpClient.Builder 设置超时时间,设置拦截器等,后面会对自己设置的拦截器部分详细讲解。
2. 整体流程
okhttp_process.png先来看下 okhttp 的整体流程,先对整体流程有个印象,然后再一步步分析具体的步骤:
(1) 直接构建 OkHttpClient;或者通过 Builder 构建,设置参数
(2) 构建 Request,url、header、body、请求方法等
(3) 构建 RealCall,通过 RealCall 执行请求,同步 execute() 或者异步 enqueue(Callback responseCallback)
(4) 只要通过 getResponseWithInterceptorChain() 方法,开启请求的责任链:自定义拦截器、RetryAndFollowUpInterceptor、BridgeInterceptor、CacheInterceptor、ConnectInterceptor、CallServerInterceptor
(5) 中间异常处理,请求成功 Response 处理等
3. OkHttpClient
创建 OkHttpClient 是通过 Builder 构建的,看下 Builder 中的参数:
final Dispatcher dispatcher; //分发器
final Proxy proxy; //代理
final List<Protocol> protocols; //协议 Http1 Http2
final List<ConnectionSpec> connectionSpecs; //传输层版本和连接协议
final List<Interceptor> interceptors; //拦截器
final List<Interceptor> networkInterceptors; //网络拦截器,一般设置 HttpLoggingInterceptor
final ProxySelector proxySelector; //代理选择
final CookieJar cookieJar; //cookie
final Cache cache; //缓存
final InternalCache internalCache; //内部缓存
final SocketFactory socketFactory; //socket 工厂
final SSLSocketFactory sslSocketFactory; //安全套接层socket 工厂,用于HTTPS
final CertificateChainCleaner certificateChainCleaner; // 验证确认响应证书 适用 HTTPS 请求连接的主机名。
final HostnameVerifier hostnameVerifier; // 主机名字确认
final CertificatePinner certificatePinner; // 证书链
final Authenticator proxyAuthenticator; //代理身份验证
final Authenticator authenticator; // 本地身份验证
final ConnectionPool connectionPool; //连接池,复用连接
final Dns dns; //域名
final boolean followSslRedirects; //安全套接层重定向
final boolean followRedirects; //本地重定向
final boolean retryOnConnectionFailure; //重试连接失败
final int connectTimeout; //连接超时
final int readTimeout; //read 超时
final int writeTimeout; //write 超时
很多参数我们在使用时都是默认的,即使我们不设置参数 Builder 中也会给出默认的参数,如超时时间
connectTimeout = 10_000;
readTimeout = 10_000;
writeTimeout = 10_000;
4. RealCall
有了 OkHttpClient 实例,然后需要一个 Request 参数,设置 url,请求方法等,通过 newCall(Request request) 方法来得到 RealCall,RealCall 是请求执行的对象,请求分为同步请求和异步请求
void enqueue(Callback responseCallback) 异步请求
Response execute() 同步请求
上面例子中 Response response = client.newCall(request).execute(); 开启了整个 GET 请求。
RealCall 构造方法:
private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
this.client = client;
this.originalRequest = originalRequest;
this.forWebSocket = forWebSocket;
// 失败重试以及重定向 拦截器
this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
}
同步请求 execute()
public Response execute() throws IOException {
// (1) 一个 Call 只能请求一次,重复请求抛出异常
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
try {
// (2) 将请求添加到分发器的同步请求集合中
client.dispatcher().executed(this);
// (3) 开启请求责任链,请求真正执行的位置
Response result = getResponseWithInterceptorChain();
if (result == null) throw new IOException("Canceled");
return result;
} catch (IOException e) {
eventListener.callFailed(this, e);
throw e;
} finally {
// (4) 请求结束,将请求从分发器的同步结合中移除
client.dispatcher().finished(this);
}
}
(1) 一个 Call 对象只能执行一次,重复请求抛出异常,再次请求会重新创建 RealCall 对象;
(2) 将请求添加到 dispatcher 分发器的同步请求集合中,对于同步请求,分发器仅仅是记录一下同步请求的集合,并没有做更多的操作;
(3) okhttp 网络请求是通过一连串的拦截器来完成的,基于责任链的方式,也是最重要的过程;
(4) 请求结束,告知分发器,将请求从同步集合中移除。
对于同步请求 Dispatcher 并没有过多参与,仅仅是在请求时将请求添加同步请求集合中, 请求完毕,从集合中移除;而异步请求,分发器才真正发挥作用, 里面是通过线程池来执行异步请求。
请求真正执行的位置是第 (3) 步,开启请求的责任链
Response getResponseWithInterceptorChain() throws IOException {
// interceptors 集合
List<Interceptor> interceptors = new ArrayList<>();
// (1) 使用者自定义拦截器
interceptors.addAll(client.interceptors());
// (2) 失败重试以及重定向 拦截器
interceptors.add(retryAndFollowUpInterceptor);
// (3) 桥接拦截器
interceptors.add(new BridgeInterceptor(client.cookieJar()));
// (4) 缓存拦截器
interceptors.add(new CacheInterceptor(client.internalCache()));
// (5) 连接拦截器
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
// (6) 网络拦截器,一般是设置打印 log 的拦截器,HttpLoggingInterceptor
interceptors.addAll(client.networkInterceptors());
}
// (7) 请求服务器拦截器(最后一步)
interceptors.add(new CallServerInterceptor(forWebSocket));
// (8) 创建责任链
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
originalRequest, this, eventListener, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
// (9) 开启责任链
return chain.proceed(originalRequest);
}
getResponseWithInterceptorChain() 方法主要是创建各个拦截器,并添加到集合中,然后创建责任链 RealInterceptorChain,该责任链持有各个拦截器,开启责任链,执行每一个拦截器,最终完成网络请求。注意拦截器添加的顺序,也就是责任链的执行顺序。
5. 责任链模式
在分析各个拦截器执行的过程前,插入责任链模式的一个小例子,方便对责任链的理解。
责任链可以抽象成一个链条 IChain
// 责任链
public interface IChain {
void proceed();
}
链条有 N 个节点,每个节点都有一个节点处理器 INodeHandler
// 节点处理器
public interface INodeHandler {
void handle(IChain chain);
}
实际例子:假设有一个汽车生产线,生产组装汽车 Car,简化分为 3 个步骤,组装车身,安装轮胎,添加内饰。汽车生产线相当于责任链,组装的 3 个步骤相当于 3 个节点处理器。处理过程开始时,首先将各个节点处理器添加到责任链的节点处理器结合中,每个节点执行完毕,改变责任链中当前需要执行的索引,也就是完成一个步骤,告知责任链需要执行下一个步骤,最终所有节点都执行完毕,一个汽车也就生产完了。下面给出主要的代码。
汽车类 Car
public class Car {
private String body;
private String inner;
private String wheel;
public Car() {
}
...
}
汽车生产线责任链
public class CarChain implements IChain {
private Car car;
private List<INodeHandler> handlerList = new ArrayList<>();
private int index;
public CarChain(Car car) {
this.car = car;
}
public Car getCar() {
return car;
}
public void setCar(Car car) {
this.car = car;
}
public List<INodeHandler> getHandlerList() {
return handlerList;
}
public void setHandlerList(List<INodeHandler> handlerList) {
this.handlerList = handlerList;
}
public int getIndex() {
return index;
}
public void setIndex(int index) {
this.index = index;
}
// 责任链执行,每次执行索引对应的节点
@Override
public void proceed() {
if (handlerList == null || handlerList.size() < 1){
throw new RuntimeException("handlerList is empty");
}
if (index >= handlerList.size()) {
System.out.println("Car is finished");
System.out.println("A new car : " + car.toString());
return;
}
handlerList.get(index).handle(this);
}
}
责任链的 3 个节点处理器
// 车身节点处理器
public class CarBodyHandler implements INodeHandler{
@Override
public void handle(IChain chain) {
CarChain carChain = (CarChain) chain;
carChain.getCar().setBody("Body");
carChain.setIndex(carChain.getIndex() + 1);
carChain.proceed();
}
}
// 轮胎节点处理器
public class CarWheelHandler implements INodeHandler{
@Override
public void handle(IChain chain) {
CarChain carChain = (CarChain) chain;
carChain.getCar().setWheel("Wheel");
carChain.setIndex(carChain.getIndex() + 1);
carChain.proceed();
}
}
// 内饰节点处理器
public class CarInnerHandler implements INodeHandler{
@Override
public void handle(IChain chain) {
CarChain carChain = (CarChain) chain;
carChain.getCar().setInner("Inner");
carChain.setIndex(carChain.getIndex() + 1);
carChain.proceed();
}
}
测试责任链
public static void main(String[] args) {
Car car = new Car();
System.out.println("before -- " + car.toString());
CarChain carChain = new CarChain(car);
List<INodeHandler> nodeHandlers = new ArrayList<>();
nodeHandlers.add(new CarBodyHandler());
nodeHandlers.add(new CarWheelHandler());
nodeHandlers.add(new CarInnerHandler());
carChain.setHandlerList(nodeHandlers);
carChain.proceed();
}
6. RealInterceptorChain
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
RealConnection connection) throws IOException {
if (index >= interceptors.size()) throw new AssertionError();
calls++;
// 假设已经有了流 stream,确保 connection 和 请求的端口是一致的,是可用的
if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must retain the same host and port");
}
// 假设已经有了流 stream,确保前一个拦截器调用了 责任链的 proceed() 方法
if (this.httpCodec != null && calls > 1) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must call proceed() exactly once");
}
// 调用下一个拦截器,将索引 +1 处理,可以看到和上面的例子的方式是一样的
RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
writeTimeout);
Interceptor interceptor = interceptors.get(index);
// 调用拦截器进行处理
Response response = interceptor.intercept(next);
// 确保如果不是最后一个拦截器,仅需要调用 proceed() 方法
// 因为在这个方法中传入的参数是前面拦截器一步一步准备的,以便于最后一个拦截器请求服务器
if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
throw new IllegalStateException("network interceptor " + interceptor
+ " must call proceed() exactly once");
}
// 请求结果不能为空
if (response == null) {
throw new NullPointerException("interceptor " + interceptor + " returned null");
}
// 请求结果的 body 不能为空
if (response.body() == null) {
throw new IllegalStateException(
"interceptor " + interceptor + " returned a response with no body");
}
return response;
}
RealInterceptorChain 是执行的责任链,传入的参数很多,有些参数不是开始就有的,需要每个拦截器在执行过程中准备的,所以需要除了最后一个拦截器 CallServerInterceptor 以外,其他拦截器都需要调用 RealInterceptorChain 的 proceed() 方法,以便于为下一步准备参数。
7. Interceptor
下面来看看各个拦截器,根据执行的顺序来分析。
注意:上面提到,除了 拦截器 CallServerInterceptor 以外,其他拦截器都需要调用 RealInterceptorChain 的 proceed() 方法,分析每个拦截器时,我们需要关注一下。
7.1 自定义拦截器
在最开始的 get 请求的例子中,添加了一个自定义的拦截器,用于设置网络请求的 header,主要通过责任链 Chain 拿到请求,然后重新构建一个请求,构建过程中将 header 设置进去,然后调用 proceed() 方法,向下传递。
OkHttpClient httpClient = new OkHttpClient.Builder()
// 添加 header 信息
.addInterceptor(new Interceptor() {
@Override
public Response intercept(Chain chain) throws IOException {
Request.Builder newBuilder = chain.request().newBuilder();
if (headMaps != null && !headMaps.isEmpty()) {
newBuilder.headers(Headers.of(headMaps));
}
return chain.proceed(newBuilder.build());
}
})
.build();
7.2 RetryAndFollowUpInterceptor
@Override public Response intercept(Chain chain) throws IOException {
Request request = chain.request();
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Call call = realChain.call();
EventListener eventListener = realChain.eventListener();
StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
createAddress(request.url()), call, eventListener, callStackTrace);
this.streamAllocation = streamAllocation;
int followUpCount = 0;
Response priorResponse = null;
while (true) {
if (canceled) {
streamAllocation.release();
throw new IOException("Canceled");
}
Response response;
boolean releaseConnection = true;
try {
response = realChain.proceed(request, streamAllocation, null, null);
releaseConnection = false;
} catch (RouteException e) {
// 通过路线连接失败,请求将不会再发送
if (!recover(e.getLastConnectException(), streamAllocation, false, request)) {
throw e.getLastConnectException();
}
releaseConnection = false;
continue;
} catch (IOException e) {
// 与服务器尝试通信失败,请求不会再发送。
boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
if (!recover(e, streamAllocation, requestSendStarted, request)) throw e;
releaseConnection = false;
continue;
} finally {
// 抛出未检查的异常,释放资源
if (releaseConnection) {
streamAllocation.streamFailed(null);
streamAllocation.release();
}
}
// Attach the prior response if it exists. Such responses never have a body.
if (priorResponse != null) {
response = response.newBuilder()
.priorResponse(priorResponse.newBuilder()
.body(null)
.build())
.build();
}
Request followUp = followUpRequest(response, streamAllocation.route());
if (followUp == null) {
if (!forWebSocket) {
streamAllocation.release();
}
return response;
}
closeQuietly(response.body());
if (++followUpCount > MAX_FOLLOW_UPS) {
streamAllocation.release();
throw new ProtocolException("Too many follow-up requests: " + followUpCount);
}
if (followUp.body() instanceof UnrepeatableRequestBody) {
streamAllocation.release();
throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
}
if (!sameConnection(response, followUp.url())) {
streamAllocation.release();
streamAllocation = new StreamAllocation(client.connectionPool(),
createAddress(followUp.url()), call, eventListener, callStackTrace);
this.streamAllocation = streamAllocation;
} else if (streamAllocation.codec() != null) {
throw new IllegalStateException("Closing the body of " + response
+ " didn't close its backing stream. Bad interceptor?");
}
request = followUp;
priorResponse = response;
}
}
(1) 失败重试和重定向拦截器主要构建 StreamAllocation 参数,StreamAllocation 类主要协调 Connections、Streams、Calls,Connections 是对远程服务器连接的物理 socket;Streams是在 Connections 上的 Http 请求/响应 对;Calls 是一系列的 Streams
(2)通过调用 chain.proceed(request, streamAllocation, null, null);向下传递,并对很多种异常情况做出了处理
(3) 对返回结果 response 处理
7.3 BridgeInterceptor
@Override public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
// (1)将用户的request转换为发送到server的请求
RequestBody body = userRequest.body();
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
}
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
}
}
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
}
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
}
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
}
Response networkResponse = chain.proceed(requestBuilder.build());
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
// (2)将服务器的响应转换成返回结果的响应,主要添加一些附加信息,如请求等
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
String contentType = networkResponse.header("Content-Type");
responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
}
return responseBuilder.build();
}
BridgeInterceptor 是桥接拦截器,主要将用户请求转换成对服务器的请求,从代码中可以看出,添加了很多请求头中的信息,如 Content-Type、Content-Length、Host、Connection、Accept-Encoding、Cookie、User-Agent;同时在请求结果回来时,也能够对响应做出转换,在响应中添加附加信息等。
7.4 CacheInterceptor
@Override
public Response intercept(Chain chain) throws IOException {
Response cacheCandidate = cache != null
? cache.get(chain.request())
: null;
long now = System.currentTimeMillis();
// 创建缓存
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse;
if (cache != null) {
cache.trackResponse(strategy);
}
// 有缓存,但是不可用,关闭缓存的结果
if (cacheCandidate != null && cacheResponse == null) {
closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
}
// 不允许网络请求时返回失败的结果
if (networkRequest == null && cacheResponse == null) {
return new Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(504)
.message("Unsatisfiable Request (only-if-cached)")
.body(Util.EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
}
// 不需要请求时,从缓存中取出结果
if (networkRequest == null) {
return cacheResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build();
}
// 继续执行责任链
Response networkResponse = null;
try {
networkResponse = chain.proceed(networkRequest);
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
closeQuietly(cacheCandidate.body());
}
}
// 如果有缓存结果,需要选择性返回响应
if (cacheResponse != null) {
if (networkResponse.code() == HTTP_NOT_MODIFIED) {
Response response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers(), networkResponse.headers()))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis())
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
networkResponse.body().close();
// 更新缓存
cache.trackConditionalCacheHit();
cache.update(cacheResponse, response);
return response;
} else {
closeQuietly(cacheResponse.body());
}
}
Response response = networkResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
if (cache != null) {
if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
// Offer this request to the cache.
CacheRequest cacheRequest = cache.put(response);
return cacheWritingResponse(cacheRequest, response);
}
if (HttpMethod.invalidatesCache(networkRequest.method())) {
try {
cache.remove(networkRequest);
} catch (IOException ignored) {
// The cache cannot be written.
}
}
}
return response;
}
CacheInterceptor 缓存拦截器没有过多说的,主要是对请求进行缓存,然后继续执行责任链,同样, 当响应返回时,需要根据结果对比缓存的响应,选择性返回,并且更新缓存。
7.5 ConnectInterceptor
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
RealConnection connection = streamAllocation.connection();
return realChain.proceed(request, streamAllocation, httpCodec, connection);
public HttpCodec newStream(
OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
int connectTimeout = chain.connectTimeoutMillis();
int readTimeout = chain.readTimeoutMillis();
int writeTimeout = chain.writeTimeoutMillis();
int pingIntervalMillis = client.pingIntervalMillis();
boolean connectionRetryEnabled = client.retryOnConnectionFailure();
try {
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);
synchronized (connectionPool) {
codec = resultCodec;
return resultCodec;
}
} catch (IOException e) {
throw new RouteException(e);
}
}
连接拦截器主要是构建 RealConnection 对象和 HttpCodec 对象,其中 RealConnection 是在连接池中查找,HttpCodec 是对 Http 请求和相应的一个编码和解码的抽象,它的构建需要 StreamAllocation、RealConnection,StreamAllocation 在 RetryAndFollowUpInterceptor 中已经构建,RealConnection 是从连接池中查找。有了 streamAllocation, httpCodec, connection 这个几个参数,通过调用 realChain.proceed(request, streamAllocation, httpCodec, connection); 传递到责任链的下一个步骤中。
7.6 netWorkInterceptor
这一个拦截器是我们自己添加的拦截器,如果没有设置,则不会执行,这个拦截器一般是用于打印 log 信息,将请求信息和响应信息打印出来,一般使用 HttpLoggingInterceptor,我们只需要自定义一下打印的格式即可。
7.7 CallServerInterceptor
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
// (1)写入请求
realChain.eventListener().requestHeadersStart(realChain.call());
httpCodec.writeRequestHeaders(request);
realChain.eventListener().requestHeadersEnd(realChain.call(), request);
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
httpCodec.flushRequest();
realChain.eventListener().responseHeadersStart(realChain.call());
responseBuilder = httpCodec.readResponseHeaders(true);
}
if (responseBuilder == null) {
// (2)如果有请求体,写入请求体,POST 请求
realChain.eventListener().requestBodyStart(realChain.call());
long contentLength = request.body().contentLength();
CountingSink requestBodyOut =
new CountingSink(httpCodec.createRequestBody(request, contentLength));
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
realChain.eventListener()
.requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
} else if (!connection.isMultiplexed()) {
streamAllocation.noNewStreams();
}
}
httpCodec.finishRequest();
// (3)请求码判断
int code = response.code();
if (code == 100) {
responseBuilder = httpCodec.readResponseHeaders(false);
response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
code = response.code();
}
realChain.eventListener()
.responseHeadersEnd(realChain.call(), response);
if (forWebSocket && code == 101) {
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
// (4) openResponseBody 获取响应体信息
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
}
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
streamAllocation.noNewStreams();
}
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
}
// (5)往上级 ConnectInterceptor 返回 Response。
return response;
}
CallServerInterceptor 是请求责任链的最后一个动作,完成后就可以获取到 Response。CallServerInterceptor 主要完成这个几个任务,信息的写和读取主要是利用 Okio 来完成。
(1) 写入请求头信息。
(2) 有请求体的情况下,写入请求体信息。
(3) 结束请求。
(4) 读取响应头信息。
(5) 往上一级 ConnectInterceptor 返回一个网络请求回来的 Response。
小结
okhttp 的请求实际上就是分解为各个拦截器的动作,各个拦截器按照先后的顺序,依次执行,采用责任链模式,最终完成请求,责任链在请求过程中逐步携带请求的参数信息, 逐步的意思就是来源前面拦截器创建的参数,后面的拦截器依赖前面拦截器的参数,参数由责任链传递过来;此外,在请求结果返回时,责任链中又从后面回溯到前面,依次处理返回结果,就是这样一去一回的过程。
okhttp_process_1.png异步请求
上面是同步请求的详细过程,下面再简单看一下异步请求的过程。
异步执行过程通过调用 client.newCall(request).enqueue(callback);
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
realCall 的 enqueue() 方法实际上是调用分发器 dispatcher 的 enqueue() 方法,同时将 回调方法包装了一下,包装成一个 AsyncCall,AsyncCall 实际上是一个 Runnable。
synchronized void enqueue(AsyncCall call) {
// 正在异步执行的请求数量小于最大限制,并且正在要请求的这个 call,指向的目标服务器没有达到最大数量,小于 5 个
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
// 添加到异步请求的准备集合当中
readyAsyncCalls.add(call);
}
}
(1) Dispatcher 将请求添加到集合中,添加过程中先判断正在异步执行的请求数量是否最大限制,并且正在要请求的这个 call,指向的目标服务器都否达到最大数量,小于默认 5 个,也就说当前请求数量没有达到最大数量,请求的目标主机 不超过 5 个时(可修改数量),就添加到正在执行的集合中,否则添加到等待集合中,等待执行。
(2) executorService 是一个线程池,异步执行 AsyncCall。
@Override
protected void execute() {
boolean signalledCallback = false;
try {
// (1) 上面同步过程分析过的,网络请求的入口,责任链开启的地方
Response response = getResponseWithInterceptorChain();
// (2) 请求取消
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
// (3) 请求成功
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
} else {
eventListener.callFailed(RealCall.this, e);
responseCallback.onFailure(RealCall.this, e);
}
} finally {
client.dispatcher().finished(this);
}
}
线程池开始执行一个 AsyncCall 时,调用它的 execute() 方法。可以看到实际上执行过程和同步过程基本一致,只不过最后请求结果返回时,通过 responseCallback 回调给请求者。
(1) getResponseWithInterceptorChain() 请求责任链开启,和上面同步分析过程一致
(2) 取消请求或者请求过程中发生异常,通过回调接口告知请求失败 responseCallback.onFailure()
(3) 请求成功 responseCallback.onResponse(RealCall.this, response);将请求结果返回
以上就是 okhttp 请求过程分析,里面涉及一些网络请求,okio 的东西,没有具体讲,后面再有文章单独来讲,重点需要掌握责任链这个设计模式的使用,文章中也有一个小例子,没有看懂 okhttp 责任链模式,可以回头看看上面的小例子,当然责任链模式还有其他形式,如通过每个节点来设置后续节点,这样就需要持有责任链。
网友评论