.dt 访问器
Series
提供了一个可以简单、快捷返回 datetime
属性值的访问器。这个访问器返回的也是 Series,索引与现有的 Series 一样。
# datetime
In [264]: s = pd.Series(pd.date_range('20130101 09:10:12', periods=4))
In [265]: s
Out[265]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]
In [266]: s.dt.hour
Out[266]:
0 9
1 9
2 9
3 9
dtype: int64
In [267]: s.dt.second
Out[267]:
0 12
1 12
2 12
3 12
dtype: int64
In [268]: s.dt.day
Out[268]:
0 1
1 2
2 3
3 4
dtype: int64
用下列表达式进行筛选非常方便:
In [269]: s[s.dt.day == 2]
Out[269]:
1 2013-01-02 09:10:12
dtype: datetime64[ns]
还可以轻易实现时区转换:
In [270]: stz = s.dt.tz_localize('US/Eastern')
In [271]: stz
Out[271]:
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00
dtype: datetime64[ns, US/Eastern]
In [272]: stz.dt.tz
Out[272]: <DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>
还可以把这些操作连在一起:
In [273]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[273]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]
还可以用 Series.dt.strftime()
把 datetime
的值当成字符串进行格式化,支持与标准的 strftime()
同样的格式。
# DatetimeIndex
In [274]: s = pd.Series(pd.date_range('20130101', periods=4))
In [275]: s
Out[275]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: datetime64[ns]
In [276]: s.dt.strftime('%Y/%m/%d')
Out[276]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object
# PeriodIndex
In [277]: s = pd.Series(pd.period_range('20130101', periods=4))
In [278]: s
Out[278]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: period[D]
In [279]: s.dt.strftime('%Y/%m/%d')
Out[279]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object
.dt
访问器还支持 period
与 timedelta
。
# period
In [280]: s = pd.Series(pd.period_range('20130101', periods=4, freq='D'))
In [281]: s
Out[281]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: period[D]
In [282]: s.dt.year
Out[282]:
0 2013
1 2013
2 2013
3 2013
dtype: int64
In [283]: s.dt.day
Out[283]:
0 1
1 2
2 3
3 4
dtype: int64
# timedelta
In [284]: s = pd.Series(pd.timedelta_range('1 day 00:00:05', periods=4, freq='s'))
In [285]: s
Out[285]:
0 1 days 00:00:05
1 1 days 00:00:06
2 1 days 00:00:07
3 1 days 00:00:08
dtype: timedelta64[ns]
In [286]: s.dt.days
Out[286]:
0 1
1 1
2 1
3 1
dtype: int64
In [287]: s.dt.seconds
Out[287]:
0 5
1 6
2 7
3 8
dtype: int64
In [288]: s.dt.components
Out[288]:
days hours minutes seconds milliseconds microseconds nanoseconds
0 1 0 0 5 0 0 0
1 1 0 0 6 0 0 0
2 1 0 0 7 0 0 0
3 1 0 0 8 0 0 0
::: tip 注意
用这个访问器处理不是 datetime
类型的值时,Series.dt
会触发 TypeError
错误。
:::
矢量化字符串方法
Series 支持字符串处理方法,操作数组中每个元素十分方便。这些方法会自动排除缺失值与空值,这也许是其最重要的特性。这些方法通过 Series 的 str
属性访问,一般情况下,这些操作的名称与内置的字符串方法一致。示例如下:
In [289]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [290]: s.str.lower()
Out[290]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
这里还提供了强大的模式匹配方法,但工业注意,模式匹配方法默认使用正则表达式。
参阅矢量化字符串方法了解完整内容。
排序
Pandas 支持三种排序方式,按索引标签排序,按列里的值排序,按两种方式混合排序。
按索引排序
Series.sort_index()
与 DataFrame.sort_index()
方法用于按索引层级对 pandas 对象排序。
In [291]: df = pd.DataFrame({
.....: 'one': pd.Series(np.random.randn(3), index=['a', 'b', 'c']),
.....: 'two': pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd']),
.....: 'three': pd.Series(np.random.randn(3), index=['b', 'c', 'd'])})
.....:
In [292]: unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'],
.....: columns=['three', 'two', 'one'])
.....:
In [293]: unsorted_df
Out[293]:
three two one
a NaN -1.152244 0.562973
d -0.252916 -0.109597 NaN
c 1.273388 -0.167123 0.640382
b -0.098217 0.009797 -1.299504
# DataFrame
In [294]: unsorted_df.sort_index()
Out[294]:
three two one
a NaN -1.152244 0.562973
b -0.098217 0.009797 -1.299504
c 1.273388 -0.167123 0.640382
d -0.252916 -0.109597 NaN
In [295]: unsorted_df.sort_index(ascending=False)
Out[295]:
three two one
d -0.252916 -0.109597 NaN
c 1.273388 -0.167123 0.640382
b -0.098217 0.009797 -1.299504
a NaN -1.152244 0.562973
In [296]: unsorted_df.sort_index(axis=1)
Out[296]:
one three two
a 0.562973 NaN -1.152244
d NaN -0.252916 -0.109597
c 0.640382 1.273388 -0.167123
b -1.299504 -0.098217 0.009797
# Series
In [297]: unsorted_df['three'].sort_index()
Out[297]:
a NaN
b -0.098217
c 1.273388
d -0.252916
Name: three, dtype: float64
按值排序
Series.sort_values()
方法用于按值对 Series 排序。DataFrame.sort_values()
方法用于按行列的值对 DataFrame 排序。DataFrame.sort_values()
的可选参数 by
用于指定按哪列排序,该参数的值可以是一列或多列数据。
In [298]: df1 = pd.DataFrame({'one': [2, 1, 1, 1],
.....: 'two': [1, 3, 2, 4],
.....: 'three': [5, 4, 3, 2]})
.....:
In [299]: df1.sort_values(by='two')
Out[299]:
one two three
0 2 1 5
2 1 2 3
1 1 3 4
3 1 4 2
参数 by
支持列名列表,示例如下:
In [300]: df1[['one', 'two', 'three']].sort_values(by=['one', 'two'])
Out[300]:
one two three
2 1 2 3
1 1 3 4
3 1 4 2
0 2 1 5
这些方法支持用 na_position
参数处理空值。
In [301]: s[2] = np.nan
In [302]: s.sort_values()
Out[302]:
0 A
3 Aaba
1 B
4 Baca
6 CABA
8 cat
7 dog
2 NaN
5 NaN
dtype: object
In [303]: s.sort_values(na_position='first')
Out[303]:
2 NaN
5 NaN
0 A
3 Aaba
1 B
4 Baca
6 CABA
8 cat
7 dog
dtype: object
按索引与值排序
0.23.0 版新增。
通过参数 by
传递给 DataFrame.sort_values()
的字符串可以引用列或索引层名。
# 创建 MultiIndex
In [304]: idx = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('a', 2),
.....: ('b', 2), ('b', 1), ('b', 1)])
.....:
In [305]: idx.names = ['first', 'second']
# 创建 DataFrame
In [306]: df_multi = pd.DataFrame({'A': np.arange(6, 0, -1)},
.....: index=idx)
.....:
In [307]: df_multi
Out[307]:
A
first second
a 1 6
2 5
2 4
b 2 3
1 2
1 1
按 second
(索引)与 A
(列)排序。
In [308]: df_multi.sort_values(by=['second', 'A'])
Out[308]:
A
first second
b 1 1
1 2
a 1 6
b 2 3
a 2 4
2 5
::: tip 注意
如果字符串、列名、索引层名重名,会触发警告提示,并以列名为准。后期版本中,这种情况将会触发模糊错误。
:::
搜索排序
Series 支持 searchsorted()
方法,这与numpy.ndarray.searchsorted()
的操作方式类似。
In [309]: ser = pd.Series([1, 2, 3])
In [310]: ser.searchsorted([0, 3])
Out[310]: array([0, 2])
In [311]: ser.searchsorted([0, 4])
Out[311]: array([0, 3])
In [312]: ser.searchsorted([1, 3], side='right')
Out[312]: array([1, 3])
In [313]: ser.searchsorted([1, 3], side='left')
Out[313]: array([0, 2])
In [314]: ser = pd.Series([3, 1, 2])
In [315]: ser.searchsorted([0, 3], sorter=np.argsort(ser))
Out[315]: array([0, 2])
最大值与最小值
Series 支持 nsmallest()
与 nlargest()
方法,本方法返回 N 个最大或最小的值。对于数据量大的 Series
来说,该方法比先为整个 Series 排序,再调用 head(n)
这种方式的速度要快得多。
In [316]: s = pd.Series(np.random.permutation(10))
In [317]: s
Out[317]:
0 2
1 0
2 3
3 7
4 1
5 5
6 9
7 6
8 8
9 4
dtype: int64
In [318]: s.sort_values()
Out[318]:
1 0
4 1
0 2
2 3
9 4
5 5
7 6
3 7
8 8
6 9
dtype: int64
In [319]: s.nsmallest(3)
Out[319]:
1 0
4 1
0 2
dtype: int64
In [320]: s.nlargest(3)
Out[320]:
6 9
8 8
3 7
dtype: int64
DataFrame
也支持 nlargest
与 nsmallest
方法。
In [321]: df = pd.DataFrame({'a': [-2, -1, 1, 10, 8, 11, -1],
.....: 'b': list('abdceff'),
.....: 'c': [1.0, 2.0, 4.0, 3.2, np.nan, 3.0, 4.0]})
.....:
In [322]: df.nlargest(3, 'a')
Out[322]:
a b c
5 11 f 3.0
3 10 c 3.2
4 8 e NaN
In [323]: df.nlargest(5, ['a', 'c'])
Out[323]:
a b c
5 11 f 3.0
3 10 c 3.2
4 8 e NaN
2 1 d 4.0
6 -1 f 4.0
In [324]: df.nsmallest(3, 'a')
Out[324]:
a b c
0 -2 a 1.0
1 -1 b 2.0
6 -1 f 4.0
In [325]: df.nsmallest(5, ['a', 'c'])
Out[325]:
a b c
0 -2 a 1.0
1 -1 b 2.0
6 -1 f 4.0
2 1 d 4.0
4 8 e NaN
用多重索引的列排序
列为多重索引时,还可以显式排序,用 by
可以指定所有层级。
In [326]: df1.columns = pd.MultiIndex.from_tuples([('a', 'one'),
.....: ('a', 'two'),
.....: ('b', 'three')])
.....:
In [327]: df1.sort_values(by=('a', 'two'))
Out[327]:
a b
one two three
0 2 1 5
2 1 2 3
1 1 3 4
3 1 4 2
复制
在 pandas 对象上执行 copy()
方法,将复制底层数据(但不包括轴索引,因为轴索引不可变),并返回一个新的对象。注意,复制对象这种操作一般来说不是必须的。比如说,以下几种方式可以就地(inplace) 改变 DataFrame:
- 插入、删除、修改列
- 为
index
或columns
属性赋值 - 对于同质数据,用
values
属性或高级索引即可直接修改值
注意,用 pandas 方法修改数据不会带来任何副作用,几乎所有方法都返回新的对象,不会修改原始数据对象。如果原始数据有所改动,唯一的可能就是用户显式指定了要修改原始数据。
网友评论