重置索引与更换标签
reindex()
是 pandas 里实现数据对齐的基本方法,该方法执行几乎所有功能都要用到的标签对齐功能。 reindex
指的是沿着指定轴,让数据与给定的一组标签进行匹配。该功能完成以下几项操作:
- 让现有数据匹配一组新标签,并重新排序;
- 在无数据但有标签的位置插入缺失值(
NA
)标记; - 如果指定,则按逻辑填充无标签的数据,该操作多见于时间序列数据。
示例如下:
In [196]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [197]: s
Out[197]:
a 1.695148
b 1.328614
c 1.234686
d -0.385845
e -1.326508
dtype: float64
In [198]: s.reindex(['e', 'b', 'f', 'd'])
Out[198]:
e -1.326508
b 1.328614
f NaN
d -0.385845
dtype: float64
本例中,原 Series 里没有标签 f
,因此,输出结果里 f
对应的值为 NaN
。
DataFrame 支持同时 reindex
索引与列:
In [199]: df
Out[199]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [200]: df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one'])
Out[200]:
three two one
c 1.227435 1.478369 0.695246
f NaN NaN NaN
b -0.050390 1.912123 0.343054
reindex
还支持 axis
关键字:
In [201]: df.reindex(['c', 'f', 'b'], axis='index')
Out[201]:
one two three
c 0.695246 1.478369 1.227435
f NaN NaN NaN
b 0.343054 1.912123 -0.050390
注意:不同对象可以共享 Index
包含的轴标签。比如,有一个 Series,还有一个 DataFrame,可以执行下列操作:
In [202]: rs = s.reindex(df.index)
In [203]: rs
Out[203]:
a 1.695148
b 1.328614
c 1.234686
d -0.385845
dtype: float64
In [204]: rs.index is df.index
Out[204]: True
这里指的是,重置后,Series 的索引与 DataFrame 的索引是同一个 Python 对象。
0.21.0 版新增。
DataFrame.reindex()
还支持 “轴样式”调用习语,可以指定单个 labels
参数,并指定应用于哪个 axis
。
In [205]: df.reindex(['c', 'f', 'b'], axis='index')
Out[205]:
one two three
c 0.695246 1.478369 1.227435
f NaN NaN NaN
b 0.343054 1.912123 -0.050390
In [206]: df.reindex(['three', 'two', 'one'], axis='columns')
Out[206]:
three two one
a NaN 1.772517 1.394981
b -0.050390 1.912123 0.343054
c 1.227435 1.478369 0.695246
d -0.613172 0.279344 NaN
::: tip 注意
多重索引与高级索引介绍了怎样用更简洁的方式重置索引。
:::
::: tip 注意
编写注重性能的代码时,最好花些时间深入理解 reindex
:预对齐数据后,操作会更快。两个未对齐的 DataFrame 相加,后台操作会执行 reindex
。探索性分析时很难注意到这点有什么不同,这是因为 reindex
已经进行了高度优化,但需要注重 CPU 周期时,显式调用 reindex
还是有一些影响的。
:::
重置索引,并与其它对象对齐
提取一个对象,并用另一个具有相同标签的对象 reindex
该对象的轴。这种操作的语法虽然简单,但未免有些啰嗦。这时,最好用 reindex_like()
方法,这是一种既有效,又简单的方式:
In [207]: df2
Out[207]:
one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369
In [208]: df3
Out[208]:
one two
a 0.583888 0.051514
b -0.468040 0.191120
c -0.115848 -0.242634
In [209]: df.reindex_like(df2)
Out[209]:
one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369
用 align
对齐多个对象
align()
方法是对齐两个对象最快的方式,该方法支持 join
参数(请参阅 joining 与 merging):
-
join='outer'
:使用两个对象索引的合集,默认值 -
join='left'
:使用左侧调用对象的索引 -
join='right'
:使用右侧传递对象的索引 -
join='inner'
:使用两个对象索引的交集
该方法返回重置索引后的两个 Series 元组:
In [210]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [211]: s1 = s[:4]
In [212]: s2 = s[1:]
In [213]: s1.align(s2)
Out[213]:
(a -0.186646
b -1.692424
c -0.303893
d -1.425662
e NaN
dtype: float64, a NaN
b -1.692424
c -0.303893
d -1.425662
e 1.114285
dtype: float64)
In [214]: s1.align(s2, join='inner')
Out[214]:
(b -1.692424
c -0.303893
d -1.425662
dtype: float64, b -1.692424
c -0.303893
d -1.425662
dtype: float64)
In [215]: s1.align(s2, join='left')
Out[215]:
(a -0.186646
b -1.692424
c -0.303893
d -1.425662
dtype: float64, a NaN
b -1.692424
c -0.303893
d -1.425662
dtype: float64)
默认条件下, join
方法既应用于索引,也应用于列:
In [216]: df.align(df2, join='inner')
Out[216]:
( one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369, one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369)
align
方法还支持 axis
选项,用来指定要对齐的轴:
In [217]: df.align(df2, join='inner', axis=0)
Out[217]:
( one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435, one two
a 1.394981 1.772517
b 0.343054 1.912123
c 0.695246 1.478369)
如果把 Series 传递给 DataFrame.align()
,可以用 axis
参数选择是在 DataFrame 的索引,还是列上对齐两个对象:
In [218]: df.align(df2.iloc[0], axis=1)
Out[218]:
( one three two
a 1.394981 NaN 1.772517
b 0.343054 -0.050390 1.912123
c 0.695246 1.227435 1.478369
d NaN -0.613172 0.279344, one 1.394981
three NaN
two 1.772517
Name: a, dtype: float64)
方法 | 动作 |
---|---|
pad / ffill | 先前填充 |
bfill / backfill | 向后填充 |
nearest | 从最近的索引值填充 |
下面用一个简单的 Series 展示 fill
方法:
In [219]: rng = pd.date_range('1/3/2000', periods=8)
In [220]: ts = pd.Series(np.random.randn(8), index=rng)
In [221]: ts2 = ts[[0, 3, 6]]
In [222]: ts
Out[222]:
2000-01-03 0.183051
2000-01-04 0.400528
2000-01-05 -0.015083
2000-01-06 2.395489
2000-01-07 1.414806
2000-01-08 0.118428
2000-01-09 0.733639
2000-01-10 -0.936077
Freq: D, dtype: float64
In [223]: ts2
Out[223]:
2000-01-03 0.183051
2000-01-06 2.395489
2000-01-09 0.733639
dtype: float64
In [224]: ts2.reindex(ts.index)
Out[224]:
2000-01-03 0.183051
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 2.395489
2000-01-07 NaN
2000-01-08 NaN
2000-01-09 0.733639
2000-01-10 NaN
Freq: D, dtype: float64
In [225]: ts2.reindex(ts.index, method='ffill')
Out[225]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 0.183051
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 2.395489
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
In [226]: ts2.reindex(ts.index, method='bfill')
Out[226]:
2000-01-03 0.183051
2000-01-04 2.395489
2000-01-05 2.395489
2000-01-06 2.395489
2000-01-07 0.733639
2000-01-08 0.733639
2000-01-09 0.733639
2000-01-10 NaN
Freq: D, dtype: float64
In [227]: ts2.reindex(ts.index, method='nearest')
Out[227]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 2.395489
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 0.733639
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
上述操作要求索引按递增或递减排序。
注意:除了 method='nearest'
,用 fillna
或 interpolate
也能实现同样的效果:
In [228]: ts2.reindex(ts.index).fillna(method='ffill')
Out[228]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 0.183051
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 2.395489
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
如果索引不是按递增或递减排序,reindex()
会触发 ValueError 错误。fillna()
与 interpolate()
则不检查索引的排序。
重置索引填充的限制
limit
与 tolerance
参数可以控制 reindex
的填充操作。limit
限定了连续匹配的最大数量:
In [229]: ts2.reindex(ts.index, method='ffill', limit=1)
Out[229]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 NaN
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 NaN
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
反之,tolerance
限定了索引与索引器值之间的最大距离:
In [230]: ts2.reindex(ts.index, method='ffill', tolerance='1 day')
Out[230]:
2000-01-03 0.183051
2000-01-04 0.183051
2000-01-05 NaN
2000-01-06 2.395489
2000-01-07 2.395489
2000-01-08 NaN
2000-01-09 0.733639
2000-01-10 0.733639
Freq: D, dtype: float64
注意:索引为 DatetimeIndex
、TimedeltaIndex
或 PeriodIndex
时,tolerance
会尽可能将这些索引强制转换为 Timedelta
,这里要求用户用恰当的字符串设定 tolerance
参数。
去掉轴上的标签
drop()
函数与 reindex
经常配合使用,该函数用于删除轴上的一组标签:
In [231]: df
Out[231]:
one two three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [232]: df.drop(['a', 'd'], axis=0)
Out[232]:
one two three
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
In [233]: df.drop(['one'], axis=1)
Out[233]:
two three
a 1.772517 NaN
b 1.912123 -0.050390
c 1.478369 1.227435
d 0.279344 -0.613172
注意:下面的代码可以运行,但不够清晰:
In [234]: df.reindex(df.index.difference(['a', 'd']))
Out[234]:
one two three
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
重命名或映射标签
rename()
方法支持按不同的轴基于映射(字典或 Series)调整标签。
In [235]: s
Out[235]:
a -0.186646
b -1.692424
c -0.303893
d -1.425662
e 1.114285
dtype: float64
In [236]: s.rename(str.upper)
Out[236]:
A -0.186646
B -1.692424
C -0.303893
D -1.425662
E 1.114285
dtype: float64
如果调用的是函数,该函数在处理标签时,必须返回一个值,而且生成的必须是一组唯一值。此外,rename()
还可以调用字典或 Series。
In [237]: df.rename(columns={'one': 'foo', 'two': 'bar'},
.....: index={'a': 'apple', 'b': 'banana', 'd': 'durian'})
.....:
Out[237]:
foo bar three
apple 1.394981 1.772517 NaN
banana 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
durian NaN 0.279344 -0.613172
pandas 不会重命名标签未包含在映射里的列或索引。注意,映射里多出的标签不会触发错误。
0.21.0 版新增。
DataFrame.rename()
还支持“轴式”习语,用这种方式可以指定单个 mapper
,及执行映射的 axis
。
In [238]: df.rename({'one': 'foo', 'two': 'bar'}, axis='columns')
Out[238]:
foo bar three
a 1.394981 1.772517 NaN
b 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
d NaN 0.279344 -0.613172
In [239]: df.rename({'a': 'apple', 'b': 'banana', 'd': 'durian'}, axis='index')
Out[239]:
one two three
apple 1.394981 1.772517 NaN
banana 0.343054 1.912123 -0.050390
c 0.695246 1.478369 1.227435
durian NaN 0.279344 -0.613172
rename()
方法还提供了 inplace
命名参数,默认为 False
,并会复制底层数据。inplace=True
时,会直接在原数据上重命名。
0.18.0 版新增。
rename()
还支持用标量或列表更改 Series.name
属性。
In [240]: s.rename("scalar-name")
Out[240]:
a -0.186646
b -1.692424
c -0.303893
d -1.425662
e 1.114285
Name: scalar-name, dtype: float64
0.24.0 版新增。
rename_axis()
方法支持指定 多重索引
名称,与标签相对应。
In [241]: df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6],
.....: 'y': [10, 20, 30, 40, 50, 60]},
.....: index=pd.MultiIndex.from_product([['a', 'b', 'c'], [1, 2]],
.....: names=['let', 'num']))
.....:
In [242]: df
Out[242]:
x y
let num
a 1 1 10
2 2 20
b 1 3 30
2 4 40
c 1 5 50
2 6 60
In [243]: df.rename_axis(index={'let': 'abc'})
Out[243]:
x y
abc num
a 1 1 10
2 2 20
b 1 3 30
2 4 40
c 1 5 50
2 6 60
In [244]: df.rename_axis(index=str.upper)
Out[244]:
x y
LET NUM
a 1 1 10
2 2 20
b 1 3 30
2 4 40
c 1 5 50
2 6 60
迭代
pandas 对象基于类型进行迭代操作。Series 迭代时被视为数组,基础迭代生成值。DataFrame 则遵循字典式习语,用对象的 key
实现迭代操作。
简言之,基础迭代(for i in object
)生成:
- Series :值
- DataFrame:列标签
例如,DataFrame 迭代时输出列名:
In [245]: df = pd.DataFrame({'col1': np.random.randn(3),
.....: 'col2': np.random.randn(3)}, index=['a', 'b', 'c'])
.....:
In [246]: for col in df:
.....: print(col)
.....:
col1
col2
Pandas 对象还支持字典式的 items()
方法,通过键值对迭代。
用下列方法可以迭代 DataFrame 里的行:
-
iterrows()
:把 DataFrame 里的行当作 (index, Series)对进行迭代。该操作把行转为 Series,同时改变数据类型,并对性能有影响。 -
itertuples()
把 DataFrame 的行当作值的命名元组进行迭代。该操作比iterrows()
快的多,建议尽量用这种方法迭代 DataFrame 的值。
::: danger 警告
Pandas 对象迭代的速度较慢。大部分情况下,没必要对行执行迭代操作,建议用以下几种替代方式:
- 矢量化:很多操作可以用内置方法或 Numpy 函数,布尔索引……
- 调用的函数不能在完整的 DataFrame / Series 上运行时,最好用
apply()
,不要对值进行迭代操作。请参阅函数应用文档。 - 如果必须对值进行迭代,请务必注意代码的性能,建议在 cython 或 numba 环境下实现内循环。参阅增强性能一节,查看这种操作方法的示例。
:::
::: danger 警告
永远不要修改迭代的内容,这种方式不能确保所有操作都能正常运作。基于数据类型,迭代器返回的是复制(copy)的结果,不是视图(view),这种写入可能不会生效!
下例中的赋值就不会生效:
In [247]: df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c']})
In [248]: for index, row in df.iterrows():
.....: row['a'] = 10
.....:
In [249]: df
Out[249]:
a b
0 1 a
1 2 b
2 3 c
:::
项目(items)
与字典型接口类似,items()
通过键值对进行迭代:
- Series:(Index,标量值)对
- DataFrame:(列,Series)对
示例如下:
In [250]: for label, ser in df.items():
.....: print(label)
.....: print(ser)
.....:
a
0 1
1 2
2 3
Name: a, dtype: int64
b
0 a
1 b
2 c
Name: b, dtype: object
iterrows
iterrows()
迭代 DataFrame 或 Series 里的每一行数据。这个操作返回一个迭代器,生成索引值及包含每行数据的 Series:
In [251]: for row_index, row in df.iterrows():
.....: print(row_index, row, sep='\n')
.....:
0
a 1
b a
Name: 0, dtype: object
1
a 2
b b
Name: 1, dtype: object
2
a 3
b c
Name: 2, dtype: object
::: tip 注意
iterrows()
返回的是 Series 里的每一行数据,该操作不会保留每行数据的数据类型,因为数据类型是通过 DataFrame 的列界定的。
示例如下:
In [252]: df_orig = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
In [253]: df_orig.dtypes
Out[253]:
int int64
float float64
dtype: object
In [254]: row = next(df_orig.iterrows())[1]
In [255]: row
Out[255]:
int 1.0
float 1.5
Name: 0, dtype: float64
row
里的值以 Series 形式返回,并被转换为浮点数,原始的整数值则在列 X:
In [256]: row['int'].dtype
Out[256]: dtype('float64')
In [257]: df_orig['int'].dtype
Out[257]: dtype('int64')
要想在行迭代时保存数据类型,最好用 itertuples()
,这个函数返回值的命名元组,总的来说,该操作比 iterrows()
速度更快。
:::
下例展示了怎样转置 DataFrame:
In [258]: df2 = pd.DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]})
In [259]: print(df2)
x y
0 1 4
1 2 5
2 3 6
In [260]: print(df2.T)
0 1 2
x 1 2 3
y 4 5 6
In [261]: df2_t = pd.DataFrame({idx: values for idx, values in df2.iterrows()})
In [262]: print(df2_t)
0 1 2
x 1 2 3
y 4 5 6
itertuples
itertuples()
方法返回为 DataFrame 里每行数据生成命名元组的迭代器。该元组的第一个元素是行的索引值,其余的值则是行的值。
示例如下:
In [263]: for row in df.itertuples():
.....: print(row)
.....:
Pandas(Index=0, a=1, b='a')
Pandas(Index=1, a=2, b='b')
Pandas(Index=2, a=3, b='c')
该方法不会把行转换为 Series,只是返回命名元组里的值。itertuples()
保存值的数据类型,而且比 iterrows()
快。
::: tip 注意
包含无效 Python 识别符的列名、重复的列名及以下划线开头的列名,会被重命名为位置名称。如果列数较大,比如大于 255 列,则返回正则元组。
:::
呆鸟云:“翻译不易,五天翻译,四处求证,三番校稿,二时排版,只求一秒点赞。”
网友评论