美文网首页
OpenCV源码分析(三):高斯模糊

OpenCV源码分析(三):高斯模糊

作者: 奔向火星005 | 来源:发表于2018-12-09 14:20 被阅读0次

注:为方便分析和解释,文章中的代码是OpenCV源码的简化版,会略去源码中一些如断言,OpenCL,硬件加速等代码。因此详情最好参看源码。

先放一张高斯模糊的效果图,原图750x1024,高斯核大小为5x5,sigma为5.


高斯滤波原理可参看其他资料,本文不再赘述。

简而言之,高斯滤波是另一种平滑滤波,它和盒式滤波的不同在于,它是一种加权平均,离中心像素越近,权重越大,因此它比盒式滤波效果更好,但也更耗时,权重的值符合正态分布:


OpenCV的高斯模糊接口定义为:

void cv::GaussianBlur( InputArray _src,       
                                     OutputArray _dst,    
                                     Size ksize,               
                                     double sigma1,        
                                     double sigma2,
                                     int borderType )

其中_src和_dst分别为输入图像和输出图像数据,为Mat类型;ksize为核(也叫滤波窗口,模板)的大小;sigma1和sigma2分别为横轴和纵轴的\sigma的值;borderType为边界扩展类型。

接下来看下GaussianBlur函数的实现:

void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
                   double sigma1, double sigma2,
                   int borderType )
{
    int type = _src.type();
    Size size = _src.size();
    _dst.create( size, type );  //根据src的大小和类型创建

    //源码中这里会判断是否有OpenCL,若有则使用OpenCL的接口执行,在此省略了

    int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);

     //源码中此处会使用并行方式执行高斯滤波,并返回。本文为分析方便,将它略去了...  

    Mat kx, ky;
    //生成高斯核
    createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);

    Mat src = _src.getMat();
    Mat dst = _dst.getMat();

    Point ofs;
    Size wsz(src.cols, src.rows);
    if(!(borderType & BORDER_ISOLATED))
        src.locateROI( wsz, ofs );

    //使用可分滤波执行
    sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType);
}

createGaussianKernels函数的实现为:

template <typename T>
static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize,
                                   double sigma1, double sigma2 )
{
    int depth = CV_MAT_DEPTH(type);
    if( sigma2 <= 0 )
        sigma2 = sigma1;

    // automatic detection of kernel size from sigma
    if( ksize.width <= 0 && sigma1 > 0 )  //当输入核的宽小于0时的处理
        ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
    if( ksize.height <= 0 && sigma2 > 0 ) //同上
        ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1;

    sigma1 = std::max( sigma1, 0. );  //sigma1要大于0
    sigma2 = std::max( sigma2, 0. );  //同上

    getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx );
    if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON )
        ky = kx;   //如果参数一样,则直接拷贝x轴的和给y轴
    else   //否则另外生成y轴的核
        getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky );
}

getGaussianKernel函数如下:

static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); }

cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype )
{
    //这个高斯核的一个近似的表
    const int SMALL_GAUSSIAN_SIZE = 7;
    static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
    {
        {1.f},
        {0.25f, 0.5f, 0.25f},
        {0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
        {0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f}
    };

    //当sigma小于或等于0,且核的大小为奇数,且小于7时,用上面的表的数据构造核
    const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ?
        small_gaussian_tab[n>>1] : 0;

    //核内的数据必须是浮点型
    CV_Assert( ktype == CV_32F || ktype == CV_64F );
    Mat kernel(n, 1, ktype);
    float* cf = kernel.ptr<float>();    
    double* cd = kernel.ptr<double>();
    //若sigma小于等于0,则用公式((n-1)*0.5 - 1)*0.3 + 0.8近似
    double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8;
    double scale2X = -0.5/(sigmaX*sigmaX);
    double sum = 0;

    int i;
    for( i = 0; i < n; i++ )
    {
        double x = i - (n-1)*0.5;
        //用查表或正态分布公式求值
        double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x);
        if( ktype == CV_32F )  //若是32位浮点数
        {
            cf[i] = (float)t;
            sum += cf[i];
        }
        else  //否则是64位浮点数
        {
            cd[i] = t;
            sum += cd[i];
        }
    }

    sum = 1./sum;
    for( i = 0; i < n; i++ )  //最后还要除以他们的和
    {
        if( ktype == CV_32F )
            cf[i] = (float)(cf[i]*sum);
        else
            cd[i] *= sum;
    }
    return kernel;
}

假如我们输入的ksize==5,sigma==5的话,我们生成的核的5个值为0.19205、0.203926、0.2.80、0.203926、0.19205,可见它是对称的。

分别生成了x轴和y轴的kernel后,将调用sepFilter2D,sepFilter2D是可分滤波器,它的意思是,有些二维滤波器可以用两个一维滤波器构造,如f2(x,y)是一个二维滤波器,它等于f1在x、y处值的积:f2(x,y) = f1(x)f1(y)。可分滤波器比直接用二维滤波器更有效率,原理可参见《Fundamentals of Computer Graphics》第9.3节。高斯滤波器和盒式滤波器都是可分滤波器,sepFilter2D函数如下:

void cv::sepFilter2D( InputArray _src, OutputArray _dst, int ddepth,
                      InputArray _kernelX, InputArray _kernelY, Point anchor,
                      double delta, int borderType )
{
    Mat src = _src.getMat(), kernelX = _kernelX.getMat(), kernelY = _kernelY.getMat();

    if( ddepth < 0 )
        ddepth = src.depth();

    _dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
    Mat dst = _dst.getMat();

    Point ofs;
    Size wsz(src.cols, src.rows);
    if( (borderType & BORDER_ISOLATED) == 0 )
        src.locateROI( wsz, ofs );

    //isContinuous应该表示Mat内的内存是否连续,若连续则直接执行赋值运算符,否则使用clone,具体详情尚未验证
    Mat contKernelX = kernelX.isContinuous() ? kernelX : kernelX.clone();
    Mat contKernelY = kernelY.isContinuous() ? kernelY : kernelY.clone();

    hal::sepFilter2D(src.type(), dst.type(), kernelX.type(),
                     src.data, src.step, dst.data, dst.step,
                     dst.cols, dst.rows, wsz.width, wsz.height, ofs.x, ofs.y,
                     contKernelX.data, kernelX.cols + kernelX.rows - 1,
                     contKernelY.data, kernelY.cols + kernelY.rows - 1,
                     anchor.x, anchor.y, delta, borderType & ~BORDER_ISOLATED);
}

继续看hal::sepFilter2D,

void sepFilter2D(int stype, int dtype, int ktype,
                 uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
                 int width, int height, int full_width, int full_height,
                 int offset_x, int offset_y,
                 uchar * kernelx_data, int kernelx_len,
                 uchar * kernely_data, int kernely_len,
                 int anchor_x, int anchor_y, double delta, int borderType)
{

    bool res = replacementSepFilter(stype, dtype, ktype,
                                    src_data, src_step, dst_data, dst_step,
                                    width, height, full_width, full_height,
                                    offset_x, offset_y,
                                    kernelx_data, kernelx_len,
                                    kernely_data, kernely_len,
                                    anchor_x, anchor_y, delta, borderType);
    if (res)  //我也不知道是啥,反正为false
        return;

    //真正调用这个
    ocvSepFilter(stype, dtype, ktype,
                 src_data, src_step, dst_data, dst_step,
                 width, height, full_width, full_height,
                 offset_x, offset_y,
                 kernelx_data, kernelx_len,
                 kernely_data, kernely_len,
                 anchor_x, anchor_y, delta, borderType);
}

ocvSepFilter如下

static void ocvSepFilter(int stype, int dtype, int ktype,
                         uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
                         int width, int height, int full_width, int full_height,
                         int offset_x, int offset_y,
                         uchar * kernelx_data, int kernelx_len,
                         uchar * kernely_data, int kernely_len,
                         int anchor_x, int anchor_y, double delta, int borderType)
{
    Mat kernelX(Size(kernelx_len, 1), ktype, kernelx_data);
    Mat kernelY(Size(kernely_len, 1), ktype, kernely_data);
    Ptr<FilterEngine> f = createSeparableLinearFilter(stype, dtype, kernelX, kernelY,
                                                      Point(anchor_x, anchor_y),
                                                      delta, borderType & ~BORDER_ISOLATED);
    Mat src(Size(width, height), stype, src_data, src_step);
    Mat dst(Size(width, height), dtype, dst_data, dst_step);
    f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
};

从代码中我们看到,和盒式滤波器一样,它也是创建FilterEngine,并调用apply来执行的。createSeparableLinearFilter如下:

cv::Ptr<cv::FilterEngine> cv::createSeparableLinearFilter(
    int _srcType, int _dstType,
    InputArray __rowKernel, InputArray __columnKernel,
    Point _anchor, double _delta,
    int _rowBorderType, int _columnBorderType,
    const Scalar& _borderValue )
{
    Mat _rowKernel = __rowKernel.getMat(), _columnKernel = __columnKernel.getMat();
    _srcType = CV_MAT_TYPE(_srcType);  //_srcType为16(CV_8UC3),即元素为1uchar类型,3通道
    _dstType = CV_MAT_TYPE(_dstType);  //同上
    int sdepth = CV_MAT_DEPTH(_srcType), ddepth = CV_MAT_DEPTH(_dstType);
    int cn = CV_MAT_CN(_srcType);
    CV_Assert( cn == CV_MAT_CN(_dstType) );
    int rsize = _rowKernel.rows + _rowKernel.cols - 1;
    int csize = _columnKernel.rows + _columnKernel.cols - 1;
    if( _anchor.x < 0 )  //若anchor小于0则设在核的中心
        _anchor.x = rsize/2;
    if( _anchor.y < 0 )
        _anchor.y = csize/2;

//rtype和ctype都是5(CV_32F),即核的元素类型是32位浮点型
    int rtype = getKernelType(_rowKernel,
        _rowKernel.rows == 1 ? Point(_anchor.x, 0) : Point(0, _anchor.x));
    int ctype = getKernelType(_columnKernel,
        _columnKernel.rows == 1 ? Point(_anchor.y, 0) : Point(0, _anchor.y));
    Mat rowKernel, columnKernel;

//精度至少也要是32位浮点型
    int bdepth = std::max(CV_32F,std::max(sdepth, ddepth));
    int bits = 0;

    if( sdepth == CV_8U &&
        ((rtype == KERNEL_SMOOTH+KERNEL_SYMMETRICAL &&
          ctype == KERNEL_SMOOTH+KERNEL_SYMMETRICAL &&
          ddepth == CV_8U) ||
         ((rtype & (KERNEL_SYMMETRICAL+KERNEL_ASYMMETRICAL)) &&
          (ctype & (KERNEL_SYMMETRICAL+KERNEL_ASYMMETRICAL)) &&
          (rtype & ctype & KERNEL_INTEGER) &&
          ddepth == CV_16S)) )  //判断为真时,会把核转换成32位整型(并放大256倍),这么做的原因还不太清楚,猜测可能是整型比浮点型计算快吧...
    {
        bdepth = CV_32S;
        bits = ddepth == CV_8U ? 8 : 0;
        _rowKernel.convertTo( rowKernel, CV_32S, 1 << bits );
        _columnKernel.convertTo( columnKernel, CV_32S, 1 << bits );
        bits *= 2;
        _delta *= (1 << bits);
    }
    else
    {
        if( _rowKernel.type() != bdepth )
            _rowKernel.convertTo( rowKernel, bdepth );
        else
            rowKernel = _rowKernel;
        if( _columnKernel.type() != bdepth )
            _columnKernel.convertTo( columnKernel, bdepth );
        else
            columnKernel = _columnKernel;
    }

    int _bufType = CV_MAKETYPE(bdepth, cn);
//实际上是SymmRowSmallFilter或RowFilter类型
    Ptr<BaseRowFilter> _rowFilter = getLinearRowFilter(
        _srcType, _bufType, rowKernel, _anchor.x, rtype);
//实际上是SymmColumnFilter或SymmColumnSmallFilter类型
    Ptr<BaseColumnFilter> _columnFilter = getLinearColumnFilter(
        _bufType, _dstType, columnKernel, _anchor.y, ctype, _delta, bits );

//创建FilterEngine
    return Ptr<FilterEngine>( new FilterEngine(Ptr<BaseFilter>(), _rowFilter, _columnFilter,
        _srcType, _dstType, _bufType, _rowBorderType, _columnBorderType, _borderValue ));
}

再回到ocvSepFilter函数,它调用FilterEngine的apply开始执行,它和盒式滤波器是一样的,如下:

int FilterEngine::proceed(unsigned char* src, int srcstep, int count,
                              unsigned char* dst, int dststep)
    {
        const int *btab = &_borderTab[0];
        int esz = 3, btab_esz = _borderElemSize;
        unsigned char** brows = &_rows[0];
        int bufRows = (int)_rows.size();
        int cn = 3;
        int width = _roi._width, kwidth = _ksize._width;
        int kheight = _ksize._height, ay = _anchor._y;
        int dx1 = _dx1, dx2 = _dx2;
        int width1 = _roi._width + kwidth - 1;
        int xofs1 = std::min(_roi._x, _anchor._x);
        bool isSep = isSeparable();
        bool makeBorder = (dx1 > 0 || dx2 > 0) && _rowBorderType != BORDER_CONSTANT;
        int dy = 0, i = 0;

        src -= xofs1*esz;
        count = std::min(count, remainingInputRows());

        for(;; dst += dststep*i, dy += i)
        {
            int dcount = bufRows - ay - _startY - _rowCount + _roi._y;
            dcount = dcount > 0 ? dcount : bufRows - kheight + 1;
            dcount = std::min(dcount, count);
            count -= dcount;
            for( ; dcount-- > 0; src += srcstep )
            {
                int bi = (_startY - _startY0 + _rowCount) % bufRows;
                unsigned char* brow = alignPtr(&_ringBuf[0], VEC_ALIGN) + bi*_bufStep;  //用来存储dst数据
                unsigned char* row = isSep ? &_srcRow[0] : brow;  //用来存储src数据

                if( ++_rowCount > bufRows )
                {
                    --_rowCount;
                    ++_startY;
                }

                //注意row+dx1*esz指向的数据才是src的数据,row[0]的数据是左边界扩展而来的数据
                memcpy( row + dx1*esz, src, (width1 - dx2 - dx1)*esz );

                if( makeBorder )  //是否需要补边
                {
                    if( btab_esz*(int)sizeof(int) == esz )
                    {
                        const int* isrc = (const int*)src;
                        int* irow = (int*)row;

                        for( i = 0; i < dx1*btab_esz; i++ )
                            irow[i] = isrc[btab[i]];
                        for( i = 0; i < dx2*btab_esz; i++ )
                            irow[i + (width1 - dx2)*btab_esz] = isrc[btab[i+dx1*btab_esz]];
                    }
                    else
                    {
                        for( i = 0; i < dx1*esz; i++ ) //扩展左边界的数据
                            row[i] = src[btab[i]];
                        for( i = 0; i < dx2*esz; i++ ) //扩展右边界的数据
                            row[i + (width1 - dx2)*esz] = src[btab[i+dx1*esz]];
                    }
                }

                if( isSep ) {
                    (*_rowFilter)(row, brow, width, 3);  //对一行像素row进行滤波,结果存到brow(_ringBuf)中
                }
            }

            int max_i = std::min(bufRows, _roi._height - (_dstY + dy) + (kheight - 1));
            for( i = 0; i < max_i; i++ )
            {   //扩展上边界
                int srcY = borderInterpolate(_dstY + dy + i + _roi._y - ay,
                                             _wholeSize._height, _columnBorderType);
                if( srcY < 0 ) // can happen only with constant border type
                    brows[i] = alignPtr(&_constBorderRow[0], VEC_ALIGN);
                else
                {
                    if( srcY >= _startY + _rowCount )
                        break;
                    int bi = (srcY - _startY0) % bufRows;
                    brows[i] = alignPtr(&_ringBuf[0], VEC_ALIGN) + bi*_bufStep; //注意brows[0]到brows[1]是补边得到的
                }
            }
            if( i < kheight )
                break;
            i -= kheight - 1;
            if( isSeparable() )
                (*_columnFilter)((const unsigned char**)brows, dst, dststep, i, _roi._width*cn); //纵向滤波,输出到dst(也是最终输出)
            else
                (*_filter2D)((const unsigned char**)brows, dst, dststep, i, _roi._width, cn);
        }
        _dstY += dy;
        return dy;
    }

和之前盒式滤波器唯一的区别是 (_rowFilter)(row, brow, width, 3)和(_columnFilter)((const unsigned char*)brows, dst, dststep, i, _roi._widthcn)两个滤波的实现不一样。假如我们使用的参数ksize==5,sigma1和sigma2都等于5,则_rowFilter实际上是SymmRowSmallFilter类型,_columnFilter是SymmColumnFilter类型,先看横向滤波SymmColumnSmallFilter的()操作符的实现:

    void operator()(const uchar* src, uchar* dst, int width, int cn)
    {
        //DT,ST都是模板类型,ST是输入数据类型(也就是图像数据类型),本例中为uchar,DT是输出数据类型,为int

        int ksize2 = this->ksize/2, ksize2n = ksize2*cn;
        const DT* kx = this->kernel.template ptr<DT>() + ksize2;
        bool symmetrical = (this->symmetryType & KERNEL_SYMMETRICAL) != 0;
        DT* D = (DT*)dst;

        //vecOp是仿函数,调用的是SymmRowSmallVec_8u32s类的()操作符,它实际上就是把src的char数据转换为int类型的dst数据
        int i = this->vecOp(src, dst, width, cn), j, k;  //返回的i是src被移动的字节数
        const ST* S = (const ST*)src + i + ksize2n;  //src要加上i才是原来的src,加上ksize2n是因为src开始有补边数据
        width *= cn;

        if( symmetrical )
        {
            if( this->ksize == 1 && kx[0] == 1 )
            {
                //省略...
            }
            else if( this->ksize == 3 )
            {
                //省略...
            }
            else if( this->ksize == 5 )  //假设ksize是5
            {
                DT k0 = kx[0], k1 = kx[1], k2 = kx[2];
                if( k0 == -2 && k1 == 0 && k2 == 1 )  
                    for( ; i <= width - 2; i += 2, S += 2 )
                    {
                        DT s0 = -2*S[0] + S[-cn*2] + S[cn*2];
                        DT s1 = -2*S[1] + S[1-cn*2] + S[1+cn*2];
                        D[i] = s0; D[i+1] = s1;
                    }
                else
                    for( ; i <= width - 2; i += 2, S += 2 )  //一般跳到这里
                    {   //每次处理两组数据,从左到右滑动窗口,加权就和,放到s0和s1中
                        DT s0 = S[0]*k0 + (S[-cn] + S[cn])*k1 + (S[-cn*2] + S[cn*2])*k2;
                        DT s1 = S[1]*k0 + (S[1-cn] + S[1+cn])*k1 + (S[1-cn*2] + S[1+cn*2])*k2;
                        D[i] = s0; D[i+1] = s1;
                    }
            }

            for( ; i < width; i++, S++ )
            {
                DT s0 = kx[0]*S[0];
                for( k = 1, j = cn; k <= ksize2; k++, j += cn )
                    s0 += kx[k]*(S[j] + S[-j]);
                D[i] = s0;
            }
        }
        else
        {
            //省略...
        }
    }

    int symmetryType;
};

接下来看SymmColumnFilter的处理,

    void operator()(const uchar** src, uchar* dst, int dststep, int count, int width)
    {
        int ksize2 = this->ksize/2;
        const ST* ky = this->kernel.template ptr<ST>() + ksize2;
        int i, k;
        bool symmetrical = (symmetryType & KERNEL_SYMMETRICAL) != 0;
        ST _delta = this->delta;
        CastOp castOp = this->castOp0;
        src += ksize2;  //跳过补边数据

        if( symmetrical )
        {
            for( ; count--; dst += dststep, src++ )
            {
                DT* D = (DT*)dst;
                i = (this->vecOp)(src, dst, width);
                #if CV_ENABLE_UNROLLED
                //省略...
                #endif
                for( ; i < width; i++ )
                {   //纵向加权求和             
                    ST s0 = ky[0]*((const ST*)src[0])[i] + _delta;
                    for( k = 1; k <= ksize2; k++ )
                        s0 += ky[k]*(((const ST*)src[k])[i] + ((const ST*)src[-k])[i]);
                    D[i] = castOp(s0);  //防溢出
                }
            }
        }
        else
        {
            //省略...
        }
    }

相关文章

  • OpenCV源码分析(三):高斯模糊

    注:为方便分析和解释,文章中的代码是OpenCV源码的简化版,会略去源码中一些如断言,OpenCL,硬件加速等代码...

  • openCV图像高斯模糊

    说明 参考:官方文档 提供两种方式设置高斯滤波的程度: 设置高斯核的大小(Gaussian kernel size...

  • 7、高斯模糊

    均值模糊的扩展,权重均值模糊,效果比均值模糊好,应用场景毛玻璃 高斯分布,即正态分布 高斯模糊源码:其实就是模糊中...

  • Python OpenCV 图片高斯模糊

    Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。 基础知识铺垫 看到一种说法,解释高斯...

  • 17.canvas 高斯模糊封装

    原文:js canvas画布实现高斯模糊效果 我们先不分析这个源码的具体内容,我们先简单改一下接口. 发现模糊效果...

  • Python生成随机高斯模糊图片

    Python可以使用opencv库很方便地生成模糊图像,如果没有安装opencv的,可以用pip安装: 想了解高斯...

  • 音视频开发之旅(39)- 高斯模糊实现与优化

    目录 高斯模糊的原理 GPUImage模糊的实现分析 高斯模糊优化 资料 收获 我们在平时的开发中模糊是非常常用的...

  • 008-Opencv笔记-均值模糊-高斯模糊

    模糊原理 Smooth/Blur 是图像处理中最简单和常用的操作之一使用该操作的原因之一就为了给图像预处理时候减低...

  • opencv相机标定

    OpenCV相机标定原理及源码分析 OpenCV摄像头标定 《OpenCV:相机标定(自带Demo)》 读Open...

  • OpenCV边缘检测常规步骤

    OpenCV边缘检测 一、基本步骤 1.平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声。 2.计算...

网友评论

      本文标题:OpenCV源码分析(三):高斯模糊

      本文链接:https://www.haomeiwen.com/subject/tsiqhqtx.html