美文网首页我是程序员阿里云python机器学习爬虫
Apache Flink 结合 Kafka 构建端到端的 Exa

Apache Flink 结合 Kafka 构建端到端的 Exa

作者: 阿里云云栖号 | 来源:发表于2019-06-21 17:48 被阅读105次

    文章目录:

    1. Apache Flink 应用程序中的 Exactly-Once 语义
    2. Flink 应用程序端到端的 Exactly-Once 语义
    3. 示例 Flink 应用程序启动预提交阶段
    4. 在 Flink 中实现两阶段提交 Operator
    5. 总结

    Apache Flink 自2017年12月发布的1.4.0版本开始,为流计算引入了一个重要的里程碑特性:TwoPhaseCommitSinkFunction(相关的Jira)。它提取了两阶段提交协议的通用逻辑,使得通过Flink来构建端到端的Exactly-Once程序成为可能。同时支持一些数据源(source)和输出端(sink),包括Apache Kafka 0.11及更高版本。它提供了一个抽象层,用户只需要实现少数方法就能实现端到端的Exactly-Once语义。

    有关TwoPhaseCommitSinkFunction的使用详见文档: TwoPhaseCommitSinkFunction。或者可以直接阅读Kafka 0.11 sink的文档: kafka。

    接下来会详细分析这个新功能以及Flink的实现逻辑,分为如下几点。

    • 描述Flink checkpoint机制是如何保证Flink程序结果的Exactly-Once的
    • 显示Flink如何通过两阶段提交协议与数据源和数据输出端交互,以提供端到端的Exactly-Once保证
    • 通过一个简单的示例,了解如何使用TwoPhaseCommitSinkFunction实现Exactly-Once的文件输出

    一、Apache Flink应用程序中的Exactly-Once语义

    当我们说『Exactly-Once』时,指的是每个输入的事件只影响最终结果一次。即使机器或软件出现故障,既没有重复数据,也不会丢数据。

    Flink很久之前就提供了Exactly-Once语义。在过去几年中,我们对Flink的checkpoint机制有过深入的描述,这是Flink有能力提供Exactly-Once语义的核心。Flink文档还提供了该功能的全面概述。

    在继续之前,先看下对checkpoint机制的简要介绍,这对理解后面的主题至关重要。

    • 次checkpoint是以下内容的一致性快照:
    • 应用程序的当前状态
    • 输入流的位置

    Flink可以配置一个固定的时间点,定期产生checkpoint,将checkpoint的数据写入持久存储系统,例如S3或HDFS。将checkpoint数据写入持久存储是异步发生的,这意味着Flink应用程序在checkpoint过程中可以继续处理数据。

    如果发生机器或软件故障,重新启动后,Flink应用程序将从最新的checkpoint点恢复处理; Flink会恢复应用程序状态,将输入流回滚到上次checkpoint保存的位置,然后重新开始运行。这意味着Flink可以像从未发生过故障一样计算结果。

    在Flink 1.4.0之前,Exactly-Once语义仅限于Flink应用程序内部,并没有扩展到Flink数据处理完后发送的大多数外部系统。Flink应用程序与各种数据输出端进行交互,开发人员需要有能力自己维护组件的上下文来保证Exactly-Once语义。

    为了提供端到端的Exactly-Once语义 – 也就是说,除了Flink应用程序内部,Flink写入的外部系统也需要能满足Exactly-Once语义 – 这些外部系统必须提供提交或回滚的方法,然后通过Flink的checkpoint机制来协调。

    分布式系统中,协调提交和回滚的常用方法是两阶段提交协议。在下一节中,我们将讨论Flink的TwoPhaseCommitSinkFunction是如何利用两阶段提交协议来提供端到端的Exactly-Once语义。

    二、Flink应用程序端到端的Exactly-Once语义

    我们将介绍两阶段提交协议,以及它如何在一个读写Kafka的Flink程序中实现端到端的Exactly-Once语义。Kafka是一个流行的消息中间件,经常与Flink一起使用。Kafka在最近的0.11版本中添加了对事务的支持。这意味着现在通过Flink读写Kafaka,并提供端到端的Exactly-Once语义有了必要的支持。

    Flink对端到端的Exactly-Once语义的支持不仅局限于Kafka,您可以将它与任何一个提供了必要的协调机制的源/输出端一起使用。例如Pravega,来自DELL/EMC的开源流媒体存储系统,通过Flink的TwoPhaseCommitSinkFunction也能支持端到端的Exactly-Once语义。

    在今天讨论的这个示例程序中,我们有:

    • 从Kafka读取的数据源(Flink内置的KafkaConsumer)
    • 窗口聚合
    • 将数据写回Kafka的数据输出端(Flink内置的KafkaProducer)

    要使数据输出端提供Exactly-Once保证,它必须将所有数据通过一个事务提交给Kafka。提交捆绑了两个checkpoint之间的所有要写入的数据。这可确保在发生故障时能回滚写入的数据。但是在分布式系统中,通常会有多个并发运行的写入任务的,简单的提交或回滚是不够的,因为所有组件必须在提交或回滚时“一致”才能确保一致的结果。Flink使用两阶段提交协议及预提交阶段来解决这个问题。

    checkpoint开始的时候,即两阶段提交协议的“预提交”阶段。当checkpoint开始时,Flink的JobManager会将checkpoint barrier(将数据流中的记录分为进入当前checkpoint与进入下一个checkpoint)注入数据流。

    brarrier在operator之间传递。对于每一个operator,它触发operator的状态快照写入到state backend。

    数据源保存了消费Kafka的偏移量(offset),之后将checkpoint barrier传递给下一个operator。

    这种方式仅适用于operator具有『内部』状态。所谓内部状态,是指Flink state backend保存和管理的 -例如,第二个operator中window聚合算出来的sum值。当一个进程有它的内部状态的时候,除了在checkpoint之前需要将数据变更写入到state backend,不需要在预提交阶段执行任何其他操作。Flink负责在checkpoint成功的情况下正确提交这些写入,或者在出现故障时中止这些写入。

    三、示例Flink应用程序启动预提交阶段

    但是,当进程具有『外部』状态时,需要作些额外的处理。外部状态通常以写入外部系统(如Kafka)的形式出现。在这种情况下,为了提供Exactly-Once保证,外部系统必须支持事务,这样才能和两阶段提交协议集成。

    在本文示例中的数据需要写入Kafka,因此数据输出端(Data Sink)有外部状态。在这种情况下,在预提交阶段,除了将其状态写入state backend之外,数据输出端还必须预先提交其外部事务。

    当checkpoint barrier在所有operator都传递了一遍,并且触发的checkpoint回调成功完成时,预提交阶段就结束了。所有触发的状态快照都被视为该checkpoint的一部分。checkpoint是整个应用程序状态的快照,包括预先提交的外部状态。如果发生故障,我们可以回滚到上次成功完成快照的时间点。

    下一步是通知所有operator,checkpoint已经成功了。这是两阶段提交协议的提交阶段,JobManager为应用程序中的每个operator发出checkpoint已完成的回调。

    数据源和 widnow operator没有外部状态,因此在提交阶段,这些operator不必执行任何操作。但是,数据输出端(Data Sink)拥有外部状态,此时应该提交外部事务。

    我们对上述知识点总结下:

    • 旦所有operator完成预提交,就提交一个commit。
    • 如果至少有一个预提交失败,则所有其他提交都将中止,我们将回滚到上一个成功完成的checkpoint。
    • 在预提交成功之后,提交的commit需要保证最终成功 – operator和外部系统都需要保障这点。如果commit失败(例如,由于间歇性网络问题),整个Flink应用程序将失败,应用程序将根据用户的重启策略重新启动,还会尝试再提交。这个过程至关重要,因为如果commit最终没有成功,将会导致数据丢失。

    因此,我们可以确定所有operator都同意checkpoint的最终结果:所有operator都同意数据已提交,或提交被中止并回滚。

    四、在Flink中实现两阶段提交Operator

    完整的实现两阶段提交协议可能有点复杂,这就是为什么Flink将它的通用逻辑提取到抽象类TwoPhaseCommitSinkFunction中的原因。

    接下来基于输出到文件的简单示例,说明如何使用TwoPhaseCommitSinkFunction。用户只需要实现四个函数,就能为数据输出端实现Exactly-Once语义:

    • beginTransaction – 在事务开始前,我们在目标文件系统的临时目录中创建一个临时文件。随后,我们可以在处理数据时将数据写入此文件。
    • preCommit – 在预提交阶段,我们刷新文件到存储,关闭文件,不再重新写入。我们还将为属于下一个checkpoint的任何后续文件写入启动一个新的事务。
    • commit – 在提交阶段,我们将预提交阶段的文件原子地移动到真正的目标目录。需要注意的是,这会增加输出数据可见性的延迟。
    • abort – 在中止阶段,我们删除临时文件。

    我们知道,如果发生任何故障,Flink会将应用程序的状态恢复到最新的一次checkpoint点。一种极端的情况是,预提交成功了,但在这次commit的通知到达operator之前发生了故障。在这种情况下,Flink会将operator的状态恢复到已经预提交,但尚未真正提交的状态。

    我们需要在预提交阶段保存足够多的信息到checkpoint状态中,以便在重启后能正确的中止或提交事务。在这个例子中,这些信息是临时文件和目标目录的路径。

    TwoPhaseCommitSinkFunction已经把这种情况考虑在内了,并且在从checkpoint点恢复状态时,会优先发出一个commit。我们需要以幂等方式实现提交,一般来说,这并不难。在这个示例中,我们可以识别出这样的情况:临时文件不在临时目录中,但已经移动到目标目录了。

    在TwoPhaseCommitSinkFunction中,还有一些其他边界情况也会考虑在内,请参考Flink文档了解更多信息。

    总结

    总结下本文涉及的一些要点:

    • Flink的checkpoint机制是支持两阶段提交协议并提供端到端的Exactly-Once语义的基础。
    • 这个方案的优点是: Flink不像其他一些系统那样,通过网络传输存储数据 – 不需要像大多数批处理程序那样将计算的每个阶段写入磁盘。
    • Flink的TwoPhaseCommitSinkFunction提取了两阶段提交协议的通用逻辑,基于此将Flink和支持事务的外部系统结合,构建端到端的Exactly-Once成为可能。
    • 从Flink 1.4.0开始,Pravega和Kafka 0.11 producer都提供了Exactly-Once语义;Kafka在0.11版本首次引入了事务,为在Flink程序中使用Kafka producer提供Exactly-Once语义提供了可能性。
    • Kafaka 0.11 producer的事务是在TwoPhaseCommitSinkFunction基础上实现的,和at-least-once producer相比只增加了非常低的开销。

    这是个令人兴奋的功能,期待Flink TwoPhaseCommitSinkFunction在未来支持更多的数据接收端。

    via:https://www.ververica.com/blog/end-to-end-exactly-once-processing-apache-flink-apache-kafka

    作者:Piotr Nowojski

    翻译| 周凯波

    周凯波,阿里巴巴技术专家,四川大学硕士,2010年毕业后加入阿里搜索事业部,从事搜索离线平台的研发工作,参与将搜索后台数据处理架构从MapReduce到Flink的重构。目前在阿里计算平台事业部,专注于基于Flink的一站式计算平台的建设。



    本文作者:apache_flink

    阅读原文

    本文为云栖社区原创内容,未经允许不得转载。

    相关文章

      网友评论

        本文标题:Apache Flink 结合 Kafka 构建端到端的 Exa

        本文链接:https://www.haomeiwen.com/subject/ttcyqctx.html