美文网首页
Android中的消息机制

Android中的消息机制

作者: 长孙雨聪七星上将 | 来源:发表于2018-02-01 14:07 被阅读0次

个人博客: http://zhangsunyucong.top

前言

Android中的消息机制是指线程之间的通信机制。我们都知道,如果我们在UI主线程中做耗时的操作而无法及时处理时,程序会弹出ANR全名Application Not Responding, 也就是"应用无响应"的对话框。

首先来一张图,从整体上来看一下android消息机制。


image

Handler:用于发送消息和处理消息
MessageQueue: 一个先进先出的消息队列
Looper:循环者,它不断的循环的遍历查询消息队列

Looper中会创建一个消息队列,并进入消息循环,不断的从消息队列中取出消息,然后分发消息给对应的消息处理函数,如果消息队列为空,它会进入阻塞等待,直到有新的消息到来,然后被唤醒。

源码分析

Looper

     private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

这就是Looper的创建函数,它创建了一个Looper实例并放到ThreadLocal中。
ThreadLocal是一个线程共享和线程安全的,ThreadLocal变量在不同的线程中有不同的副本。

这里,首先检查线程是否有Looper,如果已经有,就报"Only one Looper may be created per thread"异常。也就是说一个线程只能有一个Looper,不能重复创建。

进入Looper的构造函数

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

Looper的构造函数中主要是创建了一个消息队列,和赋值当前线程变量。

开启消息循环

    public static void loop() {
        //取出循环者
        final Looper me = myLooper();
        //开始循环之前,必须先创建循环者
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        //从循环者中取出消息队列
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        //进入循环,不断的从消息队列中取出消息,如果没有消息会进入阻塞状态
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                //将消息分发给对应的handler处理
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
            //释放资源
            msg.recycleUnchecked();
        }
    }

Looper#loop方法的工作,在代码中已经进行注释说明。

Looper#loop中会将消息分发给对应的handler处理。

msg.target.dispatchMessage(msg);

现在我们进入handler。

Handler

Handler handler = new Handler(Looper.myLooper());

首先看Handler的构造函数,可以知道Handler是怎么和Looper取得关联的。

public Handler(Looper looper, Callback callback, boolean async) 
{
    mLooper = looper;
    mQueue = looper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

主要为Handler的四个变量赋值,其中确定了Handler是和哪一个Looper关联,和Handler发送消息到对应的哪个消息队列。可以知道,一个Handler只有一个Looper和对应的MessageQueue。而不同的Handler可以共享同一个Looper和MessageQueue,这就看你在初始化Handler时与哪个Looper关联了。

Handler无参数的构造函数是和哪个Looper关联呢?

    public Handler() {
        this(null, false);
    }

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        //取出当前线程的循环者
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

Handler无参数的构造函数仍然主要是为那四个变量赋值。它会首先取出当前线程的消息循环者,如果线程没有循环者,会报一个异常。

发送消息到循环队列

public final boolean sendMessage(Message msg)
{
    return sendMessageDelayed(msg, 0);
}
    
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
    
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
            this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

sendMessage中会调用sendMessageDelayed,sendMessageDelayed再调用sendMessageAtTime,最后会调用enqueueMessage将消息入队。post开头的方法是调用相应send开头的方法的。

进入Handler#enqueueMessage

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

在分析Looper#loop时,其中有将消息的分发给相应的Handler处理的逻辑,而正是在第2行代码时,它们取得联系的。然后将消息放入Handler关联的Looper中的消息队列。

在MessageQueue#enqueueMessage中,消息入队时,如果消息队列是阻塞休眠状态,会唤醒消息队列。

if (p == null || when == 0 || when < p.when) {
    // New head, wake up the event queue if blocked.
    msg.next = p;
    mMessages = msg;
    needWake = mBlocked;
}

在Looper#loop中,会将消息分发给对应的Handler处理函数dispatchMessage处理

msg.target.dispatchMessage(msg);

进入Handler#dispatchMessage

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

java.lang.Callback

public interface Runnable {
    public abstract void run();
}

Handler#Callback

public interface Callback {
    public boolean handleMessage(Message msg);
}

优先调用Message的callback接口,如果Handler有Callback,调用Callback,否则会调用handleMessage方法。

Handler#handleMessage

public void handleMessage(Message msg) {
}

这是一个空方法,具体的消息逻辑由我们自己定义。

到此,这个流程已经解释完毕

后话

在非UI线程中只要找好时机也是可以更新UI的。这个会在源码再分析。

相关文章

网友评论

      本文标题:Android中的消息机制

      本文链接:https://www.haomeiwen.com/subject/ttedzxtx.html