美文网首页开发设计
redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下

redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下

作者: 久伴_不离 | 来源:发表于2019-05-23 10:02 被阅读69次

    面试官心理分析

    如果你连这个问题都不知道,上来就懵了,回答不出来,那线上你写代码的时候,想当然的认为写进redis的数据就一定会存在,后面导致系统各种 bug,谁来负责?

    常见的问题:

    往redis写入的数据怎么没了?

    可能有同学会遇到,在生产环境的redis经常会丢掉一些数据,写进去了,过一会儿可能就没了。我的天,同学,你问这个问题就说明 redis 你就没用对啊。redis 是缓存,你给当存储了是吧?

    啥叫缓存?用内存当缓存。内存是无限的吗,内存是很宝贵而且是有限的,磁盘是廉价而且是大量的。可能一台机器就几十个G的内存,但是可以有几个 T 的硬盘空间。redis 主要是基于内存来进行高性能、高并发的读写操作的。

    那既然内存是有限的,比如redis就只能用 10G,你要是往里面写了 20G 的数据,会咋办?当然会干掉10G 的数据,然后就保留 10G 的数据了。那干掉哪些数据?保留哪些数据?当然是干掉不常用的数据,保留常用的数据了。数据明明过期了,怎么还占用着内存?这是由redis的过期策略来决定。

    面试题剖析

    redis 过期策略?

    redis过期策略是:定期删除+惰性删除。

    所谓定期删除,指的是redis默认是每隔 100ms 就随机抽取一些设置了过期时间的 key,检查其是否过期,如果过期就删除。

    假设redis里放了 10w 个 key,都设置了过期时间,你每隔几百毫秒,就检查 10w 个 key,那 redis 基本上就死了,cpu 负载会很高的,消耗在你的检查过期 key 上了。注意,这里可不是每隔 100ms 就遍历所有的设置过期时间的 key,那样就是一场性能上的灾难。实际上 redis 是每隔 100ms 随机抽取一些key 来检查和删除的。

    但是问题是,定期删除可能会导致很多过期key到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个 key 的时候,redis 会检查一下 ,这个 key 如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。

    获取key的时候,如果此时 key 已经过期,就删除,不会返回任何东西。

    但是实际上这还是有问题的,如果定期删除漏掉了很多过期key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 redis 内存耗尽了,咋整?

    答案是:走内存淘汰机制。

    内存淘汰机制

    redis内存淘汰机制有以下几个:

    · noeviction:当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。

    · allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。

    · allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的key给干掉啊。

    · volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key(这个一般不太合适)。

    · volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。

    · volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。

     手写一个LRU 算法

    你可以现场手写最原始的LRU算法,那个代码量太大了,似乎不太现实。

    不求自己纯手工从底层开始打造出自己的LRU,但是起码要知道如何利用已有的 JDK 数据结构实现一个Java版的 LRU。

    class LRUCache<K, V> extends LinkedHashMap<K, V> {

    private final int CACHE_SIZE;

    /** * 传递进来最多能缓存多少数据 * * @param cacheSize 缓存大小 */

    public LRUCache(int cacheSize) {

    // true 表示让 linkedHashMap 按照访问顺序来进行排序,最近访问的放在头部,最老访问的放

    在尾部。

    super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);

    CACHE_SIZE = cacheSize;

    }

    @Override

    protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {

    // 当 map 中的数据量大于指定的缓存个数的时候,就自动删除最老的数据。

    return size() > CACHE_SIZE;

    }

    }

    相关文章

      网友评论

        本文标题:redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下

        本文链接:https://www.haomeiwen.com/subject/tuomzqtx.html