大师兄的Python源码学习笔记(四): 字符串对象
大师兄的Python源码学习笔记(六): Dict对象
一、List对象
- Python中的List对象为PyListObject,类似C++中的vector。
Objects\listobject.h
typedef struct {
PyObject_VAR_HEAD
/* Vector of pointers to list elements. list[0] is ob_item[0], etc. */
PyObject **ob_item;
/* ob_item contains space for 'allocated' elements. The number
* currently in use is ob_size.
* Invariants:
* 0 <= ob_size <= allocated
* len(list) == ob_size
* ob_item == NULL implies ob_size == allocated == 0
* list.sort() temporarily sets allocated to -1 to detect mutations.
*
* Items must normally not be NULL, except during construction when
* the list is not yet visible outside the function that builds it.
*/
Py_ssize_t allocated;
} PyListObject;
- 观察代码,其结构如下:
PyListObject PyObject_VAR_HEAD **ob_item allocated
- 头部的PyObject_VAR_HEAD说明PyListObject是变长对象。
- **ob_item指向包含元素的指针。
- 为了避免频繁申请内存,PyListObject会先申请一大片内存,allocated记录了申请的内存,而PyObject_VAR_HEAD中的ob_size记录了实际使用的内存。
- 所以PyListObject一定存在以下关系:
0 <= ob_size <= allocated len(list) = ob_size ob_item == NULL 意味 ob_size = allocated == 0
二、类型对象
- PyListObject对应的类型对象为PyList_Type。
Objects\listobject.c
PyTypeObject PyList_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"list",
sizeof(PyListObject),
0,
(destructor)list_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)list_repr, /* tp_repr */
0, /* tp_as_number */
&list_as_sequence, /* tp_as_sequence */
&list_as_mapping, /* tp_as_mapping */
PyObject_HashNotImplemented, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS, /* tp_flags */
list___init____doc__, /* tp_doc */
(traverseproc)list_traverse, /* tp_traverse */
(inquiry)_list_clear, /* tp_clear */
list_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
list_iter, /* tp_iter */
0, /* tp_iternext */
list_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)list___init__, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
三、创建对象
- 创建列表的唯一途径是PyList_New。
Objects\listobject.c
PyObject *
PyList_New(Py_ssize_t size)
{
PyListObject *op;
#ifdef SHOW_ALLOC_COUNT
static int initialized = 0;
if (!initialized) {
Py_AtExit(show_alloc);
initialized = 1;
}
#endif
if (size < 0) {
PyErr_BadInternalCall();
return NULL;
}
if (numfree) {
numfree--;
op = free_list[numfree];
_Py_NewReference((PyObject *)op);
#ifdef SHOW_ALLOC_COUNT
count_reuse++;
#endif
} else {
op = PyObject_GC_New(PyListObject, &PyList_Type);
if (op == NULL)
return NULL;
#ifdef SHOW_ALLOC_COUNT
count_alloc++;
#endif
}
if (size <= 0)
op->ob_item = NULL;
else {
op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *));
if (op->ob_item == NULL) {
Py_DECREF(op);
return PyErr_NoMemory();
}
}
Py_SIZE(op) = size;
op->allocated = size;
_PyObject_GC_TRACK(op);
return (PyObject *) op;
}
- PyList_New函数接受一个参数:size,用来在创建时指定元素的个数,并在创建对象后首先检查size的合法性。
if (size < 0) {
PyErr_BadInternalCall();
return NULL;
}
- 之后查看PyListObject对象缓冲池是否可用。
if (numfree) {
numfree--;
op = free_list[numfree];
_Py_NewReference((PyObject *)op);
#ifdef SHOW_ALLOC_COUNT
count_reuse++;
#endif
}
- 如果不可用则向系统申请内存并创建新的PyListObject对象。
else {
op = PyObject_GC_New(PyListObject, &PyList_Type);
if (op == NULL)
return NULL;
#ifdef SHOW_ALLOC_COUNT
count_alloc++;
#endif
}
- 最后计算对象的内存总数是否溢出。
if (size <= 0)
op->ob_item = NULL;
else {
op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *));
if (op->ob_item == NULL) {
Py_DECREF(op);
return PyErr_NoMemory();
}
}
- PyListObject缓冲池free_list默认大小为80。
Objects\listobject.c
/* Empty list reuse scheme to save calls to malloc and free */
#ifndef PyList_MAXFREELIST
#define PyList_MAXFREELIST 80
#endif
static PyListObject *free_list[PyList_MAXFREELIST];
static int numfree = 0;
- Python中有一个称为0代(Generation Zero)的链表来追踪活跃对象,
_PyObject_GC_TRACK(op)
将对象链接到了第0代对象集合中,与垃圾回收机制相关。
四、设置元素
- 为PyListObject元素设置值的方法,如:
list[0]=5
是PyList_SetItem。
Objects\listobject.c
int
PyList_SetItem(PyObject *op, Py_ssize_t i,
PyObject *newitem)
{
PyObject **p;
if (!PyList_Check(op)) {
Py_XDECREF(newitem);
PyErr_BadInternalCall();
return -1;
}
if (i < 0 || i >= Py_SIZE(op)) {
Py_XDECREF(newitem);
PyErr_SetString(PyExc_IndexError,
"list assignment index out of range");
return -1;
}
p = ((PyListObject *)op) -> ob_item + i;
Py_XSETREF(*p, newitem);
return 0;
}
- PyList_SetItem方法在对PyListObject进行有效性检查和内存空间检查后,将新元素添加到列表的索引位置。
五、获取元素
- 获取PyListObject元素值的方法为PyList_GetItem。
Objects\listobject.c
PyObject *
PyList_GetItem(PyObject *op, Py_ssize_t i)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
if (i < 0 || i >= Py_SIZE(op)) {
if (indexerr == NULL) {
indexerr = PyUnicode_FromString(
"list index out of range");
if (indexerr == NULL)
return NULL;
}
PyErr_SetObject(PyExc_IndexError, indexerr);
return NULL;
}
return ((PyListObject *)op) -> ob_item[i];
}
六、追加元素
- 追加元素就是Python中的list.append(),在源码中调用PyList_Append方法。
Objects\listobject.c
int
PyList_Append(PyObject *op, PyObject *newitem)
{
if (PyList_Check(op) && (newitem != NULL))
return app1((PyListObject *)op, newitem);
PyErr_BadInternalCall();
return -1;
}
static int
app1(PyListObject *self, PyObject *v)
{
Py_ssize_t n = PyList_GET_SIZE(self);
assert (v != NULL);
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;
}
if (list_resize(self, n+1) < 0)
return -1;
Py_INCREF(v);
PyList_SET_ITEM(self, n, v);
return 0;
}
- 追加操作会改变PyListObject的尺寸,在确认空间满足后,将列表size+1。
if (list_resize(self, n+1) < 0)
return -1;
- 最后调用PyList_SET_ITEM将元素添加到列表末尾。
Py_INCREF(v);
PyList_SET_ITEM(self, n, v);
七、插入元素
- 插入元素就是Python中的list.insert(),在源码中调用PyList_Insert方法。
Objects\listobject.c
int
PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
return ins1((PyListObject *)op, where, newitem);
}
static int
ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
{
Py_ssize_t i, n = Py_SIZE(self);
PyObject **items;
if (v == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;
}
if (list_resize(self, n+1) < 0)
return -1;
if (where < 0) {
where += n;
if (where < 0)
where = 0;
}
if (where > n)
where = n;
items = self->ob_item;
for (i = n; --i >= where; )
items[i+1] = items[i];
Py_INCREF(v);
items[where] = v;
return 0;
}
- 与append类似,insert首先检查内存后改变对象尺寸。
if (list_resize(self, n+1) < 0)
return -1;
- 区别是将改变尺寸后将指定位置后的元素往后移动了一个位置,并在指定位置设置元素。
if (where < 0) {
where += n;
if (where < 0)
where = 0;
}
if (where > n)
where = n;
items = self->ob_item;
for (i = n; --i >= where; )
items[i+1] = items[i];
Py_INCREF(v);
items[where] = v;
八、删除元素
- 删除元素就是Python中的list.remove(),在源码中调用list_remove方法。
Objects\listobject.c
static PyObject *
list_remove(PyListObject *self, PyObject *value)
/*[clinic end generated code: output=f087e1951a5e30d1 input=2dc2ba5bb2fb1f82]*/
{
Py_ssize_t i;
for (i = 0; i < Py_SIZE(self); i++) {
int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ);
if (cmp > 0) {
if (list_ass_slice(self, i, i+1,
(PyObject *)NULL) == 0)
Py_RETURN_NONE;
return NULL;
}
else if (cmp < 0)
return NULL;
}
PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
return NULL;
}
- list_remove方法首先在列表中查找第一个匹配的元素。
int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ);
- 如果找到元素,则将指定位置元素删除,并将列表尺寸-1。
if (list_ass_slice(self, i, i+1,
(PyObject *)NULL) == 0)
九、改变列表尺寸
- 在上面的代码中,经常出现方法list_resize,该方法用于调节list存储空间大小。
Objects\listobject.c
/* Ensure ob_item has room for at least newsize elements, and set
* ob_size to newsize. If newsize > ob_size on entry, the content
* of the new slots at exit is undefined heap trash; it's the caller's
* responsibility to overwrite them with sane values.
* The number of allocated elements may grow, shrink, or stay the same.
* Failure is impossible if newsize <= self.allocated on entry, although
* that partly relies on an assumption that the system realloc() never
* fails when passed a number of bytes <= the number of bytes last
* allocated (the C standard doesn't guarantee this, but it's hard to
* imagine a realloc implementation where it wouldn't be true).
* Note that self->ob_item may change, and even if newsize is less
* than ob_size on entry.
*/
static int
list_resize(PyListObject *self, Py_ssize_t newsize)
{
PyObject **items;
size_t new_allocated, num_allocated_bytes;
Py_ssize_t allocated = self->allocated;
/* Bypass realloc() when a previous overallocation is large enough
to accommodate the newsize. If the newsize falls lower than half
the allocated size, then proceed with the realloc() to shrink the list.
*/
if (allocated >= newsize && newsize >= (allocated >> 1)) {
assert(self->ob_item != NULL || newsize == 0);
Py_SIZE(self) = newsize;
return 0;
}
/* This over-allocates proportional to the list size, making room
* for additional growth. The over-allocation is mild, but is
* enough to give linear-time amortized behavior over a long
* sequence of appends() in the presence of a poorly-performing
* system realloc().
* The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
* Note: new_allocated won't overflow because the largest possible value
* is PY_SSIZE_T_MAX * (9 / 8) + 6 which always fits in a size_t.
*/
new_allocated = (size_t)newsize + (newsize >> 3) + (newsize < 9 ? 3 : 6);
if (new_allocated > (size_t)PY_SSIZE_T_MAX / sizeof(PyObject *)) {
PyErr_NoMemory();
return -1;
}
if (newsize == 0)
new_allocated = 0;
num_allocated_bytes = new_allocated * sizeof(PyObject *);
items = (PyObject **)PyMem_Realloc(self->ob_item, num_allocated_bytes);
if (items == NULL) {
PyErr_NoMemory();
return -1;
}
self->ob_item = items;
Py_SIZE(self) = newsize;
self->allocated = new_allocated;
return 0;
}
- 当
allocated/2 <= newsize <= allocated
时,只改变ob_size而allocated不动。 - 否则将调用PyMem_Realloc分配新的空间存储列表元素。
十、PyListObject缓冲池
- 缓冲池free_list中的对象在PyListObject对象被销毁过程中获得。
Objects\listobject.c
static void
list_dealloc(PyListObject *op)
{
Py_ssize_t i;
PyObject_GC_UnTrack(op);
Py_TRASHCAN_SAFE_BEGIN(op)
if (op->ob_item != NULL) {
/* Do it backwards, for Christian Tismer.
There's a simple test case where somehow this reduces
thrashing when a *very* large list is created and
immediately deleted. */
i = Py_SIZE(op);
while (--i >= 0) {
Py_XDECREF(op->ob_item[i]);
}
PyMem_FREE(op->ob_item);
}
if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))
free_list[numfree++] = op;
else
Py_TYPE(op)->tp_free((PyObject *)op);
Py_TRASHCAN_SAFE_END(op)
}
- 在删除对象时,Python会检查缓冲池free_list是否已满,如果未满,则将PyListObject放入备用。
if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))
free_list[numfree++] = op;
- 这样未来在创建新的PyListObject对象时,会首先唤醒缓冲池中的对象。
- 但这些被唤醒的对象只是PyListObject对象,而不包含曾经的PyObject*元素列表。
网友评论