美文网首页数据结构
B树(B-树)、B+树、B*树

B树(B-树)、B+树、B*树

作者: 王王王王王景 | 来源:发表于2019-07-15 11:37 被阅读0次

一、B树(B-树)

参考文章
B tree: 二叉树(Binary tree),每个节点只能存储一个数。
B-tree:B树(B-Tree,并不是B“减”树,横杠为连接符,容易被误导)
B树属于多叉树又名平衡多路查找树。每个节点可以多个数(由磁盘大小决定)。
B+tree 和 B*tree 都是 B-tree的变种

1.1 概念

B树和平衡二叉树稍有不同的是B树属于多叉树又名平衡多路查找树(查找路径不只两个),数据库索引技术里大量使用者B树和B+树的数据结构,让我们来看看他有什么特点;

1.2 B-树的规则

是一种多路搜索树(并不是二叉的):
1.定义任意非叶子结点最多只有M个儿子;且M>2;
2.根结点的儿子数为[2, M];
3.除根结点以外的非叶子结点的儿子数为[M/2, M];
4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5.非叶子结点的关键字个数=指向儿子的指针个数-1;
6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的
子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8.所有叶子结点位于同一层;
如:(M=3)


1.3B树的查询流程

如上图我要从上图中找到E字母,查找流程如下:
(1)获取根节点的关键字进行比较,当前根节点关键字为M,E<M(26个字母顺序),所以往找到指向左边的子节点(二分法规则,左小右大,左边放小于当前节点值的子节点、右边放大于当前节点值的子节点);
(2)拿到关键字D和G,D<E<G 所以直接找到D和G中间的节点;
(3)拿到E和F,因为E=E 所以直接返回关键字和指针信息(如果树结构里面没有包含所要查找的节点则返回null);

1.4B树插入节点的流程

定义一个5阶树(平衡5路查找树;),现在我们要把3、8、31、11、23、29、50、28 这些数字构建出一个5阶树出来;遵循规则:
(1)节点拆分规则:当前是要组成一个5路查找树,那么此时m=5,关键字数必须<=5-1(这里关键字数>4就要进行节点拆分);
(2)排序规则:满足节点本身比左边节点大,比右边节点小的排序规则;先插入 3、8、31、11



再插入23、29



再插入50、28

1.5 B树的删除

规则:
(1)节点合并规则:当前是要组成一个5路查找树,那么此时m=5,关键字数必须大于等于ceil(5/2);这里关键字数<2就要进行节点合并;
(2)满足节点本身比左边节点大,比右边节点小的排序规则;
(3)关键字数小于二时先从子节点取,子节点没有符合条件时就向向父节点取,取中间值往父节点放;

特点:

B树相对于平衡二叉树的不同是,每个节点包含的关键字增多了,特别是在B树应用到数据库中的时候,数据库充分利用了磁盘块的原理(磁盘数据存储是采用块的形式存储的,每个块的大小为4K,每次IO进行数据读取时,同一个磁盘块的数据可以一次性读取出来)把节点大小限制和充分使用在磁盘快大小范围;把树的节点关键字增多后树的层级比原来的二叉树少了,减少数据查找的次数和复杂度;

二、B+树

3.1 B+树概念

B+树是B树的一个升级版,相对于B树来说B+树更充分的利用了节点的空间,让查询速度更加稳定,其速度完全接近于二分法查找。为什么说B+树查找的效率要比B树更高、更稳定;我们先看看两者的区别
规则:

(1)B+跟B树不同B+树的非叶子节点不保存关键字记录的指针,只进行数据索引,这样使得B+树每个非叶子节点所能保存的关键字大大增加;
(2)B+树叶子节点保存了父节点的所有关键字记录的指针,所有数据地址必须要到叶子节点才能获取到。所以每次数据查询的次数都一样;
(3)B+树叶子节点的关键字从小到大有序排列,左边结尾数据都会保存右边节点开始数据的指针。
(4)非叶子节点的子节点数=关键字数(来源百度百科)(根据各种资料 这里有两种算法的实现方式,另一种为非叶节点的关键字数=子节点数-1(来源维基百科),虽然他们数据排列结构不一样,但其原理还是一样的Mysql 的B+树是用第一种方式实现);


特点:
1、B+树的层级更少:相较于B树B+每个非叶子节点存储的关键字数更多,树的层级更少所以查询数据更快;
2、B+树查询速度更稳定:B+所有关键字数据地址都存在叶子节点上,所以每次查找的次数都相同所以查询速度要比B树更稳定;
3、B+树天然具备排序功能:B+树所有的叶子节点数据构成了一个有序链表,在查询大小区间的数据时候更方便,数据紧密性很高,缓存的命中率也会比B树高。
4、B+树全节点遍历更快:B+树遍历整棵树只需要遍历所有的叶子节点即可,,而不需要像B树一样需要对每一层进行遍历,这有利于数据库做全表扫描。B树相对于B+树的优点是,如果经常访问的数据离根节点很近,而B树的非叶子节点本身存有关键字其数据的地址,所以这种数据检索的时候会要比B+树快。

三、B*树

3.1 B*规则

B树是B+树的变种,相对于B+树他们的不同之处如下:
(1)首先是关键字个数限制问题,B+树初始化的关键字初始化个数是cei(m/2),b
树的初始化个数为(cei(2/3m))
(2)B+树节点满时就会分裂,而B
树节点满时会检查兄弟节点是否满(因为每个节点都有指向兄弟的指针),如果兄弟节点未满则向兄弟节点转移关键字,如果兄弟节点已满,则从当前节点和兄弟节点各拿出1/3的数据创建一个新的节点出来;
特点:
在B+树的基础上因其初始化的容量变大,使得节点空间使用率更高,而又存有兄弟节点的指针,可以向兄弟节点转移关键字的特性使得B*树额分解次数变得更少;

四、这几种数据结构的总结

1、相同思想和策略从平衡二叉树、B树、B+树、B*树总体来看它们的贯彻的思想是相同的,都是采用二分法和数据平衡策略来提升查找数据的速度;
2、不同的方式的磁盘空间利用不同点是他们一个一个在演变的过程中通过IO从磁盘读取数据的原理进行一步步的演变,每一次演变都是为了让节点的空间更合理的运用起来,从而使树的层级减少达到快速查找数据的目的;

五、数据库索引为什么使用B+树

索引为什么是用B树(与B树相关结构的总称)呢?

为什么使用B+树?言简意赅,就是因为:
1.文件很大,不可能全部存储在内存中,故要存储到磁盘上
2.索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数(为什么使用B-/+Tree,还跟磁盘存取原理有关。
3.局部性原理与磁盘预读,预读的长度一般为页(page)的整倍数,(在许多操作系统中,页得大小通常为4k)
4.数据库系统巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入,(由于节点中有两个数组,所以地址连续)。而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性

相关文章

  • B树、B+树、B*树

    B-树 B+树 B*树

  • 树-二叉搜索树-平衡二叉树-红黑树-B树B+树

    关于树的总结从二叉树->二叉搜索树->平衡二叉树->红黑树->B树与B+树 B+树介绍 B树、B-树、B+树、B*...

  • B树B-树和B+树的总结

    参考:B树和B+树的总结B树、B-树、B+树、B*树都是什么 总结 利用平衡树的优势加快查询的稳定性和速度;B+树...

  • 聊一聊B+树

    标签: 图解B+树 | B+树代码|mysql 聚集索引|mysql B+树索引| 前言   虽然B+是B-演化过...

  • B-树/B+树/B*树

    B-树 B-树是一种多路搜索树(并不是二叉的): 定义任意非叶子结点最多只有 M 个儿子;且 M>2 ; 根结点的...

  • B树、B-树、B+树、B*树

    B 树 通常我们所说的 B树 或 B-树,其实指的是一种树,这里我将其称为 B树。 一颗 M 阶的 B树具有以下特...

  • B树、B-树、B+树、B*树

    B 树 通常我们所说的 B树 或 B-树,其实指的是一种树,这里我将其称为 B树。一颗 M 阶的 B树具有以下特点...

  • B树(B-树)、B+树、B*树

    一、B树(B-树) 参考文章B tree: 二叉树(Binary tree),每个节点只能存储一个数。B-tre...

  • B-树/B+树

    B-树(Balance树)和B+树应用与数据库索引,是m叉的多路平衡查找树。 1. 性质分析 1.1 M阶B-树 ...

  • B-树、B+树

    概述 前边我们已经了解了二叉查找树、红黑树。这里我们认识下B树和B+树,我们经常会听到说,mysql里的索引用的B...

网友评论

    本文标题:B树(B-树)、B+树、B*树

    本文链接:https://www.haomeiwen.com/subject/tvugkctx.html