Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.
The distance between two adjacent cells is 1.
Example 1:
Input:
0 0 0
0 1 0
0 0 0
Output:
0 0 0
0 1 0
0 0 0
Example 2:
Input:
0 0 0
0 1 0
1 1 1
Output:
0 0 0
0 1 0
1 2 1
Note:
The number of elements of the given matrix will not exceed 10,000.
There are at least one 0 in the given matrix.
The cells are adjacent in only four directions: up, down, left and right.
Solution:BFS 染色
思路:
我们可以首先遍历一次矩阵,将值为0的点都存入queue,将值为1的点改为INT_MAX。
然后开始BFS遍历,从queue中取出一个数字,遍历其周围四个点,如果越界或者周围点的值小于等于当前值,则直接跳过。因为周围点的距离更小的话(已被更好的染过),就没有更新的必要,否则将周围点的值更新为当前值加1,然后把周围点的坐标加入queue。
Time Complexity: O(N) Space Complexity: O(N)
Solution Code:
public class Solution {
public int[][] updateMatrix(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
Queue<int[]> queue = new LinkedList<>();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
queue.offer(new int[] {i, j});
}
else {
matrix[i][j] = Integer.MAX_VALUE;
}
}
}
int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
while (!queue.isEmpty()) {
int[] cell = queue.poll();
for (int[] d : dirs) {
int r = cell[0] + d[0];
int c = cell[1] + d[1];
if (r < 0 || r >= m || c < 0 || c >= n ||
matrix[r][c] <= matrix[cell[0]][cell[1]] + 1) continue;
queue.add(new int[] {r, c});
matrix[r][c] = matrix[cell[0]][cell[1]] + 1;
}
}
return matrix;
}
}
网友评论