美文网首页
3、卷积神经网络(Mnist数据集)

3、卷积神经网络(Mnist数据集)

作者: MakeStart | 来源:发表于2019-11-09 11:02 被阅读0次
    import tensorflow as tf
    import random
    import numpy as np
    import matplotlib.pyplot as plt
    import datetime
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("data/", one_hot=True)
    
    tf.reset_default_graph()
    sess = tf.InteractiveSession()
    x = tf.placeholder("float", shape = [None, 28,28,1]) #shape in CNNs is always None x height x width x color channels
    y_ = tf.placeholder("float", shape = [None, 10]) #shape is always None x number of classes
    
    W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))#shape is filter x filter x input channels x output channels
    b_conv1 = tf.Variable(tf.constant(.1, shape = [32])) #shape of the bias just has to match output channels of the filter
    
    h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1
    h_conv1 = tf.nn.relu(h_conv1)
    h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    def conv2d(x, W):
        return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    #Second Conv and Pool Layers
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
    b_conv2 = tf.Variable(tf.constant(.1, shape = [64]))
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    #First Fully Connected Layer
    W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
    b_fc1 = tf.Variable(tf.constant(.1, shape = [1024]))
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    #Dropout Layer
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    #Second Fully Connected Layer
    W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
    b_fc2 = tf.Variable(tf.constant(.1, shape = [10]))
    
    #Final Layer
    y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    
    crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits = y))
    trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss)
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    sess.run(tf.global_variables_initializer())
    
    batchSize = 50
    for i in range(1000):
        batch = mnist.train.next_batch(batchSize)
        trainingInputs = batch[0].reshape([batchSize,28,28,1])
        trainingLabels = batch[1]
        if i%100 == 0:
            trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainingInputs, y_: trainingLabels, keep_prob: 1.0})
            print ("step %d, training accuracy %g"%(i, trainAccuracy))
        trainStep.run(session=sess, feed_dict={x: trainingInputs, y_: trainingLabels, keep_prob: 0.5})
    
    
    

    相关文章

      网友评论

          本文标题:3、卷积神经网络(Mnist数据集)

          本文链接:https://www.haomeiwen.com/subject/tyggbctx.html