CS224n笔记01 自然语言处理与深度学习简介

作者: DeamoV | 来源:发表于2018-10-23 23:27 被阅读14次
cs224n-2017-lecture1.png.jpeg

简单声明

本笔记为 CS224n 课程在学习过程中留下的笔记。整体风格以简洁为主,尽量去掉不必要的背景知识说明,只留下个人觉得最重要的内容以供日后参考回忆。其中部分内容为了巩固英语,可能会因为方便采用英文记录。

课程先决条件

  • Python基础知识
  • 高等数学、概率论、线性代数知识
  • 基础机器学习算法
    • 梯度下降
    • 线性回归
    • 逻辑回归
    • Softmax
    • SVM
    • PAC
      注:斯坦福CS229 / 周志华西瓜书

本课学习收获总览

  • 整体自然语言处理的流程
  • 深度学习的 NLP 和之前的有什么区别
  • NLP 的难点在哪里

自然语言处理的总览

image

Phonetic : representing speech sounds by means of symbols that have one value only
Phonology : the phonetics and phonemics of a language at a particular time
Morphology:a study and description of word formation (such as inflection, derivation, and compounding) in language
Syntactic:of, relating to, or according to the rules of syntax or syntactics

根据上述 Webstar 词典的翻译我们可以看到,这个整个过程很像是通信领域信号的发出和接受的过程。自然语言处理系统的输入分为两个部分,一个是文本的输入(我们暂且不谈),另一个则是语音的输入。好的,我们收到了语音,我们都知道这些语音不一定都是标准的,可能还带有方言之类的,所以我们首先要分析它,也就是第一个圈圈。之后由于单词的变形有很多,所以我们要把它们全部变换成原本的形式,也就是 Morphological Analysis 这个过程。之后,再进行语法(Syntactic)分析,最后再进行语义(Semantic Interpretation)理解。

NLP 为什么难

  • Complexity in representing, learning and using linguistic/situational/world/visual knowledge
  • Human languages are ambiguous (unlike programming and other formal languages)
  • Human language interpretation depends on real world, common sense, and contextual knowledge

机器学习 VS 深度学习

如下图所示,传统的机器学习中很大一部分人工部分是人力的去观察你的数据,然后从中人为的提出特征,这需要消耗大量的人力,甚至这个人力还必须由有博士学位的专家才能做,而机器只是代替人类做了人类不容易做到的对算法调优的过程。


image

那么深度学习 (Deep Learning) 是什么呢,首先从宏观的来讲深度学习隶属于表征学习(Representation Learning),即特征学习(Feature learning)。正如其名,表征学习就是自动的从原始数据中提取分类和特征提取(feature detection)所需要的特征(representation),也就是说深度学习可以做之前机器学习中人力的那部分内容。

宏观结束了,进入微观理解, 如下图所示,深度学习中是一个多层的网络,每一层都会学习出一部分特征,然后将这些特征喂给下一层,这个学习过程可以反复的去修正 / 训练这些提出的特征,效率高。


image

最后,大家在学机器学习的时候都知道有两种机器学习,一种是有监督学习,一种是无监督学习。深度学习两者都能做,这点是真的有点厉害。

其他总结

这堂课中有一个很重要的总结,就是在所有的 NLP 学习 Level 中,所有字的表达和其表达的含义(representations for words and what they actually represent)都是用向量(Vectors)来代替的。这点非常重要,特此记录。

相关文章

网友评论

    本文标题:CS224n笔记01 自然语言处理与深度学习简介

    本文链接:https://www.haomeiwen.com/subject/tzhlaftx.html