美文网首页邵红晓
spark thrift server 查询日志留存

spark thrift server 查询日志留存

作者: ron_yang | 来源:发表于2018-08-09 18:16 被阅读0次

spark thrift server的web ui在运行时可以看到sql查询的提交用户,执行sql等信息


image.png image.png

但是当这个实例停掉或者异常终止以后,你再去spark history server的webui去查看,发现这部分信息就没有了……


image.png

究其原因,原来spark thrift server并没有将这部分数据序列化到spark history server的store中,回头有空可以单独讲讲这部分源码的实现

这篇帖子是使用一个折中的办法实现了这部分数据的日志留存

修改spark-hive-thriftserver工程下org.apache.spark.sql.hive.thriftserver.HiveThriftServer2类,做如下修改:

    def onStatementError(id: String, errorMessage: String, errorTrace: String): Unit = {
      synchronized {
        executionList(id).finishTimestamp = System.currentTimeMillis
        executionList(id).detail = errorMessage
        executionList(id).state = ExecutionState.FAILED
        totalRunning -= 1
        //增加下面一句话
        SqlListenerUtil.write(executionList(id))
        
        trimExecutionIfNecessary()
      }
    }

    def onStatementFinish(id: String): Unit = synchronized {
      executionList(id).finishTimestamp = System.currentTimeMillis
      executionList(id).state = ExecutionState.FINISHED
      totalRunning -= 1
      //增加下面一句话
      SqlListenerUtil.write(executionList(id))
      trimExecutionIfNecessary()
    }

新增org.apache.spark.sql.hive.thriftserver.SqlListenerUtil类

package org.apache.spark.sql.hive.thriftserver

import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.scala.DefaultScalaModule
import com.fasterxml.jackson.module.scala.experimental.ScalaObjectMapper
import org.apache.spark.internal.Logging
import org.apache.spark.sql.hive.thriftserver.HiveThriftServer2.{ExecutionInfo, uiTab}
import org.apache.spark.status.api.v1.{JobData, StageData}

import scala.collection.mutable.ArrayBuffer

object SqlListenerUtil extends Logging {
  val mapper: ObjectMapper with ScalaObjectMapper = new ObjectMapper() with ScalaObjectMapper
  mapper.registerModule(DefaultScalaModule)
  val stagesInfo: ArrayBuffer[StageData] = ArrayBuffer[StageData]()
  val jobsInfo: ArrayBuffer[JobData] = ArrayBuffer[JobData]()

  def write(executionInfo: ExecutionInfo) = synchronized {
    stagesInfo.clear()
    jobsInfo.clear()

    val sparkUI = uiTab.get.parent
    val store = sparkUI.store
    executionInfo.jobId.foreach {
      id =>
        val jobData = store.job(id.toInt)
        jobsInfo += jobData
        jobData.stageIds.foreach {
          stageId =>
            val stageDatas = store.stageData(stageId)
            stagesInfo ++= stageDatas
        }
    }

    val sqlInfo = SqlInfo(sparkUI.appId, executionInfo, jobsInfo, stagesInfo)

    log.info(mapper.writeValueAsString(sqlInfo))
  }


  case class SqlInfo(appId: String, executionInfo: ExecutionInfo, jobsInfo: ArrayBuffer[JobData], stagesInfo: ArrayBuffer[StageData])

}

重新打包编辑后替换相应的jar包

修改spark安装目录下的log4j.properties,增加如下信息:

# 自定义sql查询监控
log4j.logger.org.apache.spark.sql.hive.thriftserver.SqlListenerUtil=INFO,listener 
log4j.additivity.org.apache.spark.sql.hive.thriftserver.SqlListenerUtil=false 
log4j.appender.listener=org.apache.log4j.DailyRollingFileAppender
log4j.appender.listener.File=/var/log/spark2/spark-sql-listener
log4j.appender.listener.layout=org.apache.log4j.PatternLayout
log4j.appender.listener.layout.ConversionPattern=%m%n
log4j.appender.listener.DatePattern=.yyyy-MM-dd

重启spark-thrift-server

这样查询日志就以json格式记录在/var/log/spark2/spark-sql-listener文件中了

image.png
image.png

相关文章

网友评论

    本文标题:spark thrift server 查询日志留存

    本文链接:https://www.haomeiwen.com/subject/tzmcbftx.html