美文网首页
JDBC数据源实战

JDBC数据源实战

作者: 一个人一匹马 | 来源:发表于2019-02-22 15:35 被阅读0次

Java版本

Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "students");
DataFrame jdbcDF = sqlContext.read().format("jdbc").options(options).load();

Scala版本

val jdbcDF = sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://spark1:3306/testdb", "dbtable" -> "students")).load()

案例:查询分数大于80分的学生信息

首先创建mysql

grant all on testdb.* to ''@'spark1' with grant option;
grant all privileges on testdb.* to 'test'@'%' identified by 'test';
grant all privileges on testdb.* to 'test'@'localhost' identified by 'test';
grant all privileges on testdb.* to 'test'@'spark1' identified by 'test';
flush privileges;

create database if not exists hive_metadata;
grant all privileges on hive_metadata.* to 'hive'@'%' identified by 'hive';
grant all privileges on hive_metadata.* to 'hive'@'localhost' identified by 'hive';
grant all privileges on hive_metadata.* to 'hive'@'spark1' identified by 'hive';
flush privileges;


create database testdb;
Use  testdb;
create table student_infos(name varchar(20),age integer)
create table student_scores(name varchar(20), scores integer)
insert into student_infos values('leo',18),('marry',17),('jack',19);

insert into student_scores values('leo',88),('marry',97),('jack',59);

create table good_student_infos(name varchar(20), age integer ,scores integer)

 import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
 import scala.Tuple2;

/**
* JDBC数据源
* @author Administrator
*
*/
public class JDBCDataSource {

public static void main(String[] args) {
​​SparkConf conf = new SparkConf()​​​​.setAppName("JDBCDataSource");  
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
​​// 总结一下
​​// jdbc数据源
​​// 首先,是通过SQLContext的read系列方法,将mysql中的数据加载为DataFrame
// 然后可以将DataFrame转换为RDD,使用Spark Core提供的各种算子进行操作
​​// 最后可以将得到的数据结果,通过foreach()算子,写入mysql、hbase、redis等等db / cache中
​​// 分别将mysql中两张表的数据加载为DataFrame
Map<String, String> options = new HashMap<String, String>();
​​options.put("url", "jdbc:mysql://spark1:3306/testdb");
​​options.put("dbtable", "student_infos");
​​DataFrame studentInfosDF = sqlContext.read().format("jdbc")​​​​.options(options).load();
options.put("dbtable", "student_scores");
​​DataFrame studentScoresDF = sqlContext.read().format("jdbc")​​​​.options(options).load();

​​// 将两个DataFrame转换为JavaPairRDD,执行join操作    
JavaPairRDD<String, Tuple2<Integer, Integer>> studentsRDD = ​​​studentInfosDF.javaRDD().mapToPair(

​​​​​​new PairFunction<Row, String, Integer>() {

​​​​​​​private static final long serialVersionUID = 1L;

@Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(row.getString(0),
​​​​​​​​​​Integer.valueOf(String.valueOf(row.get(1))));  
​​​​​​​}
​​​​​​})​​​​.join(studentScoresDF.javaRDD().mapToPair(

new PairFunction<Row, String, Integer>() {

​​​​​​​private static final long serialVersionUID = 1L;

@Override
​​​​​​​public Tuple2<String, Integer> call(Row row) throws Exception {
​​​​​​​​return new Tuple2<String, Integer>(String.valueOf(row.get(0)),
​​​​​​​​​​Integer.valueOf(String.valueOf(row.get(1))));  
​​​​​​​}
​​​​​​}));

​​// 将JavaPairRDD转换为JavaRDD<Row>
​​JavaRDD<Row> studentRowsRDD = studentsRDD.map(

new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() {
​​​​​private static final long serialVersionUID = 1L;

 ​​​​​@Override
public Row call(
​​​​​​​Tuple2<String, Tuple2<Integer, Integer>> tuple) ​​​​​​​throws Exception {
​​​​​​return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
​​​​​}
​​​​});

​​// 过滤出分数大于80分的数据
JavaRDD<Row> filteredStudentRowsRDD = studentRowsRDD.filter(

new Function<Row, Boolean>() {

​​​​​private static final long serialVersionUID = 1L;

​​​​​@Override
​​​​​public Boolean call(Row row) throws Exception {
​​​​​​if(row.getInt(2) > 80) {
​​​​​​​return true;
​​​​​​}
​​​​​​return false;
​​​​​}
​​​​});

​​// 转换为DataFrame
​​List<StructField> structFields = new ArrayList<StructField>();
​​structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true));  
​​structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));
​​structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));
StructType structType = DataTypes.createStructType(structFields);
DataFrame studentsDF = sqlContext.createDataFrame(filteredStudentRowsRDD, structType);
​​Row[] rows = studentsDF.collect();
​​for(Row row : rows) {
​​​System.out.println(row);  
​​}

​​// 将DataFrame中的数据保存到mysql表中
​​// 这种方式是在企业里很常用的,有可能是插入mysql、有可能是插入hbase,还有可能是插入redis缓
studentsDF.javaRDD().foreach(new VoidFunction<Row>() {

private static final long serialVersionUID = 1L;

 @Override
​​​public void call(Row row) throws Exception {
​​​​String sql = "insert into good_student_infos values(" ​​​​​​+ "'" + String.valueOf(row.getString(0)) + "'," ​​​​​​+ Integer.valueOf(String.valueOf(row.get(1))) + "," + Integer.valueOf(String.valueOf(row.get(2))) + ")";
​​​​Class.forName("com.mysql.jdbc.Driver"); 
​​​​Connection conn = null;
​​​​Statement stmt = null;
​​​​try {
conn = DriverManager.getConnection(
​​​​​​​"jdbc:mysql://spark1:3306/testdb", "", "");
​​​​​stmt = conn.createStatement();
stmt.executeUpdate(sql);
​​​​} catch (Exception e) {
​​​​​e.printStackTrace();
​​​​} finally {
​​​​​if(stmt != null) {
​​​​​​stmt.close();
​​​​​}
​​​​​if(conn != null) {
​​​​​​conn.close();
​​​​​}
​​​​}
​​​}
​​});
sc.close();
​}
}

测试:
Use testdb;
Show tables;
Select * from good_student_infos;

相关文章

网友评论

      本文标题:JDBC数据源实战

      本文链接:https://www.haomeiwen.com/subject/tzrsyqtx.html