本文首发于我的博客:gongyanli.com
参考视频:莫烦的Pandas视频
前言:其实我之前看过pandas的书,但是本着看过就忘记的原则,下次再看见他的时候,反正看着很熟悉,怎么用早就抛到九霄云外了。所以这次网上看了几个简单的小视频,然后总结了以下,虽然没有以前看得那么繁琐,但我一直认为够用就好,不够用的等到用的时候再去查找。
一、安装
windows:pip install pandas(anaconda下)
mac:pip install pandas
linux:pip install pandas
二、导入
import pandas as pd
import numpy as np
三、Pandas--基本介绍
Numpy和Pandas区别:
Numpy:列表形式,没有数值标签,类似于python的列表
Pandas:字典形式,类似于python的字典
Series:
s = pd.Series([1,3,6,np.nan,44,1])
print(s)
"""
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
"""
DataFrame:
dates = pd.date_range('20160101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])
print(df)
"""
a b c d
2016-01-01 -0.253065 -2.071051 -0.640515 0.613663
2016-01-02 -1.147178 1.532470 0.989255 -0.499761
2016-01-03 1.221656 -2.390171 1.862914 0.778070
2016-01-04 1.473877 -0.046419 0.610046 0.204672
2016-01-05 -1.584752 -0.700592 1.487264 -1.778293
2016-01-06 0.633675 -1.414157 -0.277066 -0.442545
"""
print(df['b'])
"""
2016-01-01 -2.071051
2016-01-02 1.532470
2016-01-03 -2.390171
2016-01-04 -0.046419
2016-01-05 -0.700592
2016-01-06 -1.414157
Freq: D, Name: b, dtype: float64
"""
df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print(df1)
"""
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
"""
df2 = pd.DataFrame({'A' : 1.,
'B' : pd.Timestamp('20130102'),
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
'D' : np.array([3] * 4,dtype='int32'),
'E' : pd.Categorical(["test","train","test","train"]),
'F' : 'foo'})
print(df2)
"""
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
"""
print(df2.dtypes)
"""
df2.dtypes
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
"""
print(df2.index)
# Int64Index([0, 1, 2, 3], dtype='int64')
print(df2.columns)
# Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
print(df2.values)
"""
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)
"""
print(df2.describe())
"""
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
"""
print(df2.T)
"""
0 1 2 \
A 1 1 1
B 2013-01-02 00:00:00 2013-01-02 00:00:00 2013-01-02 00:00:00
C 1 1 1
D 3 3 3
E test train test
F foo foo foo
3
A 1
B 2013-01-02 00:00:00
C 1
D 3
E train
F foo
"""
print(df2.sort_index(axis=1, ascending=False))
"""
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
"""
print(df2.sort_values(by='B'))
"""
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
"""
四、Pandas--选择数据
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])
"""
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
"""
简单筛选
print(df['A'])
print(df.A)
"""
2013-01-01 0
2013-01-02 4
2013-01-03 8
2013-01-04 12
2013-01-05 16
2013-01-06 20
Freq: D, Name: A, dtype: int64
"""
print(df[0:3]) # 跨越多行
"""
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
"""
print(df['20130102':'20130104']) # 跨越多列
"""
A B C D
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
"""
标签loc筛选
print(df.loc['20130102'])
"""
A 4
B 5
C 6
D 7
Name: 2013-01-02 00:00:00, dtype: int64
"""
print(df.loc[:,['A','B']])
"""
A B
2013-01-01 0 1
2013-01-02 4 5
2013-01-03 8 9
2013-01-04 12 13
2013-01-05 16 17
2013-01-06 20 21
"""
print(df.loc['20130102',['A','B']])
"""
A 4
B 5
Name: 2013-01-02 00:00:00, dtype: int64
"""
序列iloc筛选
print(df.iloc[3,1])
# 13
print(df.iloc[3:5,1:3])
"""
B C
2013-01-04 13 14
2013-01-05 17 18
"""
print(df.iloc[[1,3,5],1:3])
"""
B C
2013-01-02 5 6
2013-01-04 13 14
2013-01-06 21 22
"""
混合ix筛选
print(df.ix[:3,['A','C']])
"""
A C
2013-01-01 0 2
2013-01-02 4 6
2013-01-03 8 10
"""
判断筛选
print(df[df.A>8])
"""
A B C D
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
"""
五、Pandas--设置值
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])
"""
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
"""
根据位置loc和iloc设置值
df.iloc[2,2] = 1111
df.loc['20130101','B'] = 2222
"""
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 1111 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
"""
根据条件设置值
df.B[df.A>4] = 0
"""
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 8 0 1111 11
2013-01-04 12 0 14 15
2013-01-05 16 0 18 19
2013-01-06 20 0 22 23
"""
按行或列设置值
df['F'] = np.nan
"""
A B C D F
2013-01-01 0 2222 2 3 NaN
2013-01-02 4 5 6 7 NaN
2013-01-03 8 0 1111 11 NaN
2013-01-04 12 0 14 15 NaN
2013-01-05 16 0 18 19 NaN
2013-01-06 20 0 22 23 NaN
"""
添加数据--长度必须对齐
df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101',periods=6))
"""
A B C D F E
2013-01-01 0 2222 2 3 NaN 1
2013-01-02 4 5 6 7 NaN 2
2013-01-03 8 0 1111 11 NaN 3
2013-01-04 12 0 14 15 NaN 4
2013-01-05 16 0 18 19 NaN 5
2013-01-06 20 0 22 23 NaN 6
"""
六、Pandas--处理丢失值
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan
"""
A B C D
2013-01-01 0 NaN 2.0 3
2013-01-02 4 5.0 NaN 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
"""
pd.dropna()--删除缺失值所在的行或列
df.dropna(
axis=0, # 0: 对行进行操作; 1: 对列进行操作
how='any' # 'any': 只要存在 NaN 就 drop 掉; 'all': 必须全部是 NaN 才 drop
)
"""
A B C D
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
"""
pd.fillna()--填充缺失值
df.fillna(value=0)
"""
A B C D
2013-01-01 0 0.0 2.0 3
2013-01-02 4 5.0 0.0 7
2013-01-03 8 9.0 10.0 11
2013-01-04 12 13.0 14.0 15
2013-01-05 16 17.0 18.0 19
2013-01-06 20 21.0 22.0 23
"""
pd.isnull()--判断缺失值,True为缺失值
df.isnull()
"""
A B C D
2013-01-01 False True False False
2013-01-02 False False True False
2013-01-03 False False False False
2013-01-04 False False False False
2013-01-05 False False False False
2013-01-06 False False False False
"""
检查数据中是否存在NaN,如果存在返回True
np.any(df.isnull()) == True
# True
六、Pandas--导入导出数据
pandas可读取格式:csv、excel、json、html、pickle等,详见官方文档
读取csv
#读取csv
data = pd.read_csv('student.csv')
#打印出data
print(data)
将资料存取成pickle
data.to_pickle('student.pickle')
七、Pandas--合并--concat
axis--合并方向(axis=0是预设值)
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d'])
#concat纵向合并
res = pd.concat([df1, df2, df3], axis=0)
#打印结果
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 0 1.0 1.0 1.0 1.0
# 1 1.0 1.0 1.0 1.0
# 2 1.0 1.0 1.0 1.0
# 0 2.0 2.0 2.0 2.0
# 1 2.0 2.0 2.0 2.0
# 2 2.0 2.0 2.0 2.0
ignore_index (重置 index)
#承上一个例子,并将index_ignore设定为True
res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)
#打印结果
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0
# 6 2.0 2.0 2.0 2.0
# 7 2.0 2.0 2.0 2.0
# 8 2.0 2.0 2.0 2.0
join(合并方式)--join='outer'是预设值
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])
#纵向"外"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='outer')
print(res)
# a b c d e
# 1 0.0 0.0 0.0 0.0 NaN
# 2 0.0 0.0 0.0 0.0 NaN
# 3 0.0 0.0 0.0 0.0 NaN
# 2 NaN 1.0 1.0 1.0 1.0
# 3 NaN 1.0 1.0 1.0 1.0
# 4 NaN 1.0 1.0 1.0 1.0
#承上一个例子
#纵向"内"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='inner')
#打印结果
print(res)
# b c d
# 1 0.0 0.0 0.0
# 2 0.0 0.0 0.0
# 3 0.0 0.0 0.0
# 2 1.0 1.0 1.0
# 3 1.0 1.0 1.0
# 4 1.0 1.0 1.0
#重置index并打印结果
res = pd.concat([df1, df2], axis=0, join='inner', ignore_index=True)
print(res)
# b c d
# 0 0.0 0.0 0.0
# 1 0.0 0.0 0.0
# 2 0.0 0.0 0.0
# 3 1.0 1.0 1.0
# 4 1.0 1.0 1.0
# 5 1.0 1.0 1.0
join_axes (依照 axes 合并)
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])
#依照`df1.index`进行横向合并
res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])
#打印结果
print(res)
# a b c d b c d e
# 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
# 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
#移除join_axes,并打印结果
res = pd.concat([df1, df2], axis=1)
print(res)
# a b c d b c d e
# 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
# 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
# 4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
append (添加数据)--只有纵向合并,没有横向合并
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])
#将df2合并到df1的下面,以及重置index,并打印出结果
res = df1.append(df2, ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0
#合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果
res = df1.append([df2, df3], ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 1.0 1.0 1.0
# 4 1.0 1.0 1.0 1.0
# 5 1.0 1.0 1.0 1.0
# 6 1.0 1.0 1.0 1.0
# 7 1.0 1.0 1.0 1.0
# 8 1.0 1.0 1.0 1.0
#合并series,将s1合并至df1,以及重置index,并打印出结果
res = df1.append(s1, ignore_index=True)
print(res)
# a b c d
# 0 0.0 0.0 0.0 0.0
# 1 0.0 0.0 0.0 0.0
# 2 0.0 0.0 0.0 0.0
# 3 1.0 2.0 3.0 4.0
八、Pandas--合并-- merge
用法:主要用于两组有key column的数据,统一索引的数据,通常也被用在Database的处理中。
依据一组key合并
#定义资料集并打印出
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
print(left)
# A B key
# 0 A0 B0 K0
# 1 A1 B1 K1
# 2 A2 B2 K2
# 3 A3 B3 K3
print(right)
# C D key
# 0 C0 D0 K0
# 1 C1 D1 K1
# 2 C2 D2 K2
# 3 C3 D3 K3
#依据key column合并,并打印出
res = pd.merge(left, right, on='key')
print(res)
A B key C D
# 0 A0 B0 K0 C0 D0
# 1 A1 B1 K1 C1 D1
# 2 A2 B2 K2 C2 D2
# 3 A3 B3 K3 C3 D3
依据两组key合并--合并时有4种方法how = ['left', 'right', 'outer', 'inner'],预设值how='inner'
#定义资料集并打印出
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
print(left)
# A B key1 key2
# 0 A0 B0 K0 K0
# 1 A1 B1 K0 K1
# 2 A2 B2 K1 K0
# 3 A3 B3 K2 K1
print(right)
# C D key1 key2
# 0 C0 D0 K0 K0
# 1 C1 D1 K1 K0
# 2 C2 D2 K1 K0
# 3 C3 D3 K2 K0
#依据key1与key2 columns进行合并,并打印出四种结果['left', 'right', 'outer', 'inner']
res = pd.merge(left, right, on=['key1', 'key2'], how='inner')
print(res)
# A B key1 key2 C D
# 0 A0 B0 K0 K0 C0 D0
# 1 A2 B2 K1 K0 C1 D1
# 2 A2 B2 K1 K0 C2 D2
res = pd.merge(left, right, on=['key1', 'key2'], how='outer')
print(res)
# A B key1 key2 C D
# 0 A0 B0 K0 K0 C0 D0
# 1 A1 B1 K0 K1 NaN NaN
# 2 A2 B2 K1 K0 C1 D1
# 3 A2 B2 K1 K0 C2 D2
# 4 A3 B3 K2 K1 NaN NaN
# 5 NaN NaN K2 K0 C3 D3
res = pd.merge(left, right, on=['key1', 'key2'], how='left')
print(res)
# A B key1 key2 C D
# 0 A0 B0 K0 K0 C0 D0
# 1 A1 B1 K0 K1 NaN NaN
# 2 A2 B2 K1 K0 C1 D1
# 3 A2 B2 K1 K0 C2 D2
# 4 A3 B3 K2 K1 NaN NaN
res = pd.merge(left, right, on=['key1', 'key2'], how='right')
print(res)
# A B key1 key2 C D
# 0 A0 B0 K0 K0 C0 D0
# 1 A2 B2 K1 K0 C1 D1
# 2 A2 B2 K1 K0 C2 D2
# 3 NaN NaN K2 K0 C3 D3
Indicator--indicator=True会将合并的记录放在新的一列。
#定义资料集并打印出
df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})
df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
print(df1)
# col1 col_left
# 0 0 a
# 1 1 b
print(df2)
# col1 col_right
# 0 1 2
# 1 2 2
# 2 2 2
# 依据col1进行合并,并启用indicator=True,最后打印出
res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
print(res)
# col1 col_left col_right _merge
# 0 0.0 a NaN left_only
# 1 1.0 b 2.0 both
# 2 2.0 NaN 2.0 right_only
# 3 2.0 NaN 2.0 right_only
# 自定indicator column的名称,并打印出
res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
print(res)
# col1 col_left col_right indicator_column
# 0 0.0 a NaN left_only
# 1 1.0 b 2.0 both
# 2 2.0 NaN 2.0 right_only
# 3 2.0 NaN 2.0 right_only
依据index合并
#定义资料集并打印出
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
'D': ['D0', 'D2', 'D3']},
index=['K0', 'K2', 'K3'])
print(left)
# A B
# K0 A0 B0
# K1 A1 B1
# K2 A2 B2
print(right)
# C D
# K0 C0 D0
# K2 C2 D2
# K3 C3 D3
#依据左右资料集的index进行合并,how='outer',并打印出
res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
print(res)
# A B C D
# K0 A0 B0 C0 D0
# K1 A1 B1 NaN NaN
# K2 A2 B2 C2 D2
# K3 NaN NaN C3 D3
#依据左右资料集的index进行合并,how='inner',并打印出
res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
print(res)
# A B C D
# K0 A0 B0 C0 D0
# K2 A2 B2 C2 D2
解决overlapping的问题
#定义资料集
boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]})
girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]})
#使用suffixes解决overlapping的问题
res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner')
print(res)
# age_boy k age_girl
# 0 1 K0 4
# 1 1 K0 5
九、Pandas--plot出图
导入
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
Series可视化
# 随机生成1000个数据
data = pd.Series(np.random.randn(1000),index=np.arange(1000))
# 为了方便观看效果, 我们累加这个数据
data.cumsum()
# pandas 数据可以直接观看其可视化形式
data.plot()
plt.show()
可以使用 plt.plot(x=, y=),把x,y的数据作为参数存进去,但是data本来就是一个数据,所以我们可以直接plot。
DataFrame可视化
data = pd.DataFrame(
np.random.randn(1000,4),
index=np.arange(1000),
columns=list("ABCD")
)
data.cumsum()
data.plot()
plt.show()
常用方法:
plot
bar
hist
box
kde
area
scatter
hexbin
ax = data.plot.scatter(x='A',y='B',color='DarkBlue',label='Class1')
# 将之下这个 data 画在上一个 ax 上面
data.plot.scatter(x='A',y='C',color='LightGreen',label='Class2',ax=ax)
plt.show()
网友评论