美文网首页
Canal详解

Canal详解

作者: 彦帧 | 来源:发表于2020-07-22 23:23 被阅读0次

    canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议;mysql master收到dump请求,开始推送binary log给slave(也就是canal);canal解析binary log对象(原始为byte流)。

    mysql主备复制实现

    image

    从上层来看,复制分成三步:

    1. master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events,可以通过show binlog events进行查看);
    2. slave将master的binary log events拷贝到它的中继日志(relay log);
    3. slave重做中继日志中的事件,将改变反映它自己的数据。

    Binlog获取详解

    Binlog发送接收流程,流程如下图所示:


    image.png

    首先,我们需要伪造一个slave,向master注册,这样master才会发送binlog event。注册很简单,就是向master发送COM_REGISTER_SLAVE命令,带上slave相关信息。这里需要注意,因为在MySQL的replication topology中,都需要使用一个唯一的server id来区别标示不同的server实例,所以这里我们伪造的slave也需要一个唯一的server id。
    接着实现binlog的dump。MySQL只支持一种binlog dump方式,也就是指定binlog filename + position,向master发送COM_BINLOG_DUMP命令。在发送dump命令的时候,我们可以指定flag为BINLOG_DUMP_NON_BLOCK,这样master在没有可发送的binlog event之后,就会返回一个EOF package。不过通常对于slave来说,一直把连接挂着可能更好,这样能更及时收到新产生的binlog event。
    Dump命令包图如下所示:

    image.png

    如上图所示,在报文中塞入binlogPosition和binlogFileName即可让master从相应的位置发送binlog event。
    关于binlog event的细节,请参照我另一篇文章。 binlog详解

    canal结构

    image.png

    说明:

    • server代表一个canal运行实例,对应于一个jvm,也可以理解为一个进程
    • instance对应于一个数据队列 (1个server对应1..n个instance),每一个数据队列可以理解为一个数据库实例。

    Server设计

    image.png

    server代表了一个canal的运行实例,为了方便组件化使用,特意抽象了Embeded(嵌入式) / Netty(网络访问)的两种实现

    • Embeded : 对latency和可用性都有比较高的要求,自己又能hold住分布式的相关技术(比如failover)
    • Netty : 基于netty封装了一层网络协议,由canal server保证其可用性,采用的pull模型,当然latency会稍微打点折扣,不过这个也视情况而定。(阿里系的notify和metaq,典型的push/pull模型,目前也逐步的在向pull模型靠拢,push在数据量大的时候会有一些问题)

    Instance设计

    image.png

    instance代表了一个实际运行的数据队列,包括了EventPaser,EventSink,EventStore等组件。

    抽象了CanalInstanceGenerator,主要是考虑配置的管理方式:

    manager方式: 和你自己的内部web console/manager系统进行对接。(目前主要是公司内部使用,Otter采用这种方式)
    spring方式:基于spring xml + properties进行定义,构建spring配置.

    下面是canalServer和instance如何运行

    canalServer.setCanalInstanceGenerator(new CanalInstanceGenerator() {
    
                public CanalInstance generate(String destination) {
                    Canal canal = canalConfigClient.findCanal(destination);
                    // 此处省略部分代码 大致逻辑是设置canal一些属性
    
                    CanalInstanceWithManager instance = new CanalInstanceWithManager(canal, filter) {
    
                        protected CanalHAController initHaController() {
                            HAMode haMode = parameters.getHaMode();
                            if (haMode.isMedia()) {
                                return new MediaHAController(parameters.getMediaGroup(),
                                    parameters.getDbUsername(),
                                    parameters.getDbPassword(),
                                    parameters.getDefaultDatabaseName());
                            } else {
                                return super.initHaController();
                            }
                        }
    
                        protected void startEventParserInternal(CanalEventParser parser, boolean isGroup) {
                            //大致逻辑是 设置支持的类型
                            //初始化设置MysqlEventParser的主库信息,这处抽象不好,目前只支持mysql
                        }
    
                    };
                    return instance;
                }
            });
            canalServer.start(); //启动canalServer
    
            canalServer.start(destination);//启动对应instance
            this.clientIdentity = new ClientIdentity(destination, pipeline.getParameters().getMainstemClientId(), filter);
            canalServer.subscribe(clientIdentity);// 发起一次订阅,当监听到instance配置时,调用generate方法注入新的instance
    

    instance模块:

    • eventParser (数据源接入,模拟slave协议和master进行交互,协议解析)
    • eventSink (Parser和Store链接器,进行数据过滤,加工,分发的工作)
    • eventStore (数据存储)
    • metaManager (增量订阅&消费信息管理器)

    EventParser设计

    大致过程:


    image.png

    整个parser过程大致可分为几步:

    Connection获取上一次解析成功的位置 (如果第一次启动,则获取初始指定的位置或者是当前数据库的binlog位点)
    Connection建立链接,发送BINLOG_DUMP指令
    // 0. write command number
    // 1. write 4 bytes bin-log position to start at
    // 2. write 2 bytes bin-log flags
    // 3. write 4 bytes server id of the slave
    // 4. write bin-log file name
    Mysql开始推送Binaly Log
    接收到的Binaly Log的通过Binlog parser进行协议解析,补充一些特定信息
    // 补充字段名字,字段类型,主键信息,unsigned类型处理
    传递给EventSink模块进行数据存储,是一个阻塞操作,直到存储成功
    存储成功后,由CanalLogPositionManager定时记录Binaly Log位置

    EventSink设计

    image.png

    说明:

    • 数据过滤:支持通配符的过滤模式,表名,字段内容等
    • 数据路由/分发:解决1:n (1个parser对应多个store的模式)
    • 数据归并:解决n:1 (多个parser对应1个store)
    • 数据加工:在进入store之前进行额外的处理,比如join

    ** 数据1:n业务 **

    为了合理的利用数据库资源, 一般常见的业务都是按照schema进行隔离,然后在mysql上层或者dao这一层面上,进行一个数据源路由,屏蔽数据库物理位置对开发的影响,阿里系主要是通过cobar/tddl来解决数据源路由问题。

    所以,一般一个数据库实例上,会部署多个schema,每个schema会有由1个或者多个业务方关注

    ** 数据n:1业务 **

    同样,当一个业务的数据规模达到一定的量级后,必然会涉及到水平拆分和垂直拆分的问题,针对这些拆分的数据需要处理时,就需要链接多个store进行处理,消费的位点就会变成多份,而且数据消费的进度无法得到尽可能有序的保证。

    所以,在一定业务场景下,需要将拆分后的增量数据进行归并处理,比如按照时间戳/全局id进行排序归并.

    EventStore设计

    1. 目前仅实现了Memory内存模式,后续计划增加本地file存储,mixed混合模式
    2. 借鉴了Disruptor的RingBuffer的实现思路
      RingBuffer设计:
    image.png

    定义了3个cursor

    Put : Sink模块进行数据存储的最后一次写入位置
    Get : 数据订阅获取的最后一次提取位置
    Ack : 数据消费成功的最后一次消费位置

    借鉴Disruptor的RingBuffer的实现,将RingBuffer拉直来看:


    image.png

    实现说明:

    Put/Get/Ack cursor用于递增,采用long型存储
    buffer的get操作,通过取余或者与操作。(与操作: cusor & (size - 1) , size需要为2的指数,效率比较高)

    HA机制设计

    canal的ha分为两部分,canal server和canal client分别有对应的ha实现

    • canal server: 为了减少对mysql dump的请求,不同server上的instance要求同一时间只能有一个处于running,其他的处于standby状态.
    • canal client: 为了保证有序性,一份instance同一时间只能由一个canal client进行get/ack/rollback操作,否则客户端接收无法保证有序。

    整个HA机制的控制主要是依赖了zookeeper的几个特性,watcher和EPHEMERAL节点(和session生命周期绑定),可以看下我之前zookeeper的相关文章。

    Canal Server:


    image.png

    大致步骤:

    • canal server要启动某个canal instance时都先向zookeeper进行一次尝试启动判断 (实现:创建EPHEMERAL节点,谁创建成功就允许谁启动)
    • 创建zookeeper节点成功后,对应的canal server就启动对应的canal instance,没有创建成功的canal instance就会处于standby状态
    • 一旦zookeeper发现canal server A创建的节点消失后,立即通知其他的canal server再次进行步骤1的操作,重新选出一个canal server启动instance.
    • canal client每次进行connect时,会首先向zookeeper询问当前是谁启动了canal instance,然后和其建立链接,一旦链接不可用,会重新尝试connect.

    Canal Client的方式和canal server方式类似,也是利用zookeeper的抢占EPHEMERAL节点的方式进行控制.

    相关文章

      网友评论

          本文标题:Canal详解

          本文链接:https://www.haomeiwen.com/subject/ucjupftx.html