美文网首页
HashMap重要源码解读

HashMap重要源码解读

作者: 萍水相逢_程序员 | 来源:发表于2018-11-08 23:46 被阅读0次
    
    public class HashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable {
    
      
        /**
         *默认初始化的数组容量 必须是2的幂次方
         * The default initial capacity - MUST be a power of two.
         */
         //在获取数组下标的时候tab[(n - 1) & hash] 要做到& 与运算的结果等于取模的效果,必须n是2的幂次方,
         //[n-1] 即1111**的形式才能保证 结果取决于hash值,才能做到更好的散列。 假如数组有0的话,0 & 操作后还是0  就一定会限制散列的范围
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        
        /**
         * 最大的数组容量
         * The maximum capacity, used if a higher value is implicitly specified
         * by either of the constructors with arguments.
         * MUST be a power of two <= 1<<30.
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * 默认的计算扩容的加载因子 , 超出了负载因子与当前容量的乘积时,扩大原先的2容量
         * The load factor used when none specified in constructor.
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         * 链表转树的判断条件
         */
        static final int TREEIFY_THRESHOLD = 8;
    
        /**
         * 树转链表的判定条件
         * The bin count threshold for untreeifying a (split) bin during a
         * resize operation. Should be less than TREEIFY_THRESHOLD, and at
         * most 6 to mesh with shrinkage detection under removal.
         */
        static final int UNTREEIFY_THRESHOLD = 6;
    
        /**
         * 默认的 HashMap被使用的空间大小超过这个常量时,会开始树化
         */
        static final int MIN_TREEIFY_CAPACITY = 64;
    
        /**
         *链表的节点
         * Basic hash bin node, used for most entries.  (See below for
         * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
         */
        static class Node<K,V> implements Map.Entry<K,V> {
            final int hash; //哈希值
            final K key; //key
            V value; // value
            Node<K,V> next;//链表下个节点
    
            Node(int hash, K key, V value, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    
            public final K getKey()        { return key; }
            public final V getValue()      { return value; }
            public final String toString() { return key + "=" + value; }
    
            //每个节点的hash值, 是将key的hashcode 和 value的hashcode 做 ^ 操作得到
            public final int hashCode() {
                return Objects.hashCode(key) ^ Objects.hashCode(value);
            }
    
            //设置新值 返回旧值
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
    
            public final boolean equals(Object o) {
                if (o == this)
                    return true;
                if (o instanceof Map.Entry) {
                    Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                    if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                        return true;
                }
                return false;
            }
        }
    
        /* ---------------- Static utilities -------------- */
    
        /**
         */
         //没有直接使用key的hashcode(),将键的hashcode的高16位异或低16位(高位运算),
         //这样即使数组table的length比较小的时候,
         //也能保证高低位都参与到Hash的计算中
        static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
    
        
        /**
         * 返回最近的不小于输入参数的2的整数次幂
         * Returns a power of two size for the given target capacity.
         */
        static final int tableSizeFor(int cap) {
            //再赋值给n的目的是令找到的目标值大于或等于原值
            //如果原值就是2的幂次方,不进行减一 通过如下计算 会扩大一倍。
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 
    1;
        }
    
        /* ---------------- Fields -------------- */
    
        /**
         * The table, initialized on first use, and resized as
         * necessary. When allocated, length is always a power of two.
         * (We also tolerate length zero in some operations to allow
         * bootstrapping mechanics that are currently not needed.)
         */
         //hash表
        transient Node<K,V>[] table;
    
        /**
         * Holds cached entrySet(). Note that AbstractMap fields are used
         * for keySet() and values().
         */
        transient Set<Map.Entry<K,V>> entrySet;
    
        /**
         * The number of key-value mappings contained in this map.
         */
         //当前hashMap的大小
        transient int size;
    
        /**
         * The number of times this HashMap has been structurally modified
         * Structural modifications are those that change the number of mappings in
         * the HashMap or otherwise modify its internal structure (e.g.,
         * rehash).  This field is used to make iterators on Collection-views of
         * the HashMap fail-fast.  (See ConcurrentModificationException).
         */
        transient int modCount;
    
        /**
         * The next size value at which to resize (capacity * load factor).
         *
         * @serial
         */
        // (The javadoc description is true upon serialization.
        // Additionally, if the table array has not been allocated, this
        // field holds the initial array capacity, or zero signifying
        // DEFAULT_INITIAL_CAPACITY.)
        //threshold其实就表示了hashmap的真实容量大小
        int threshold;
    
        /**
         * The load factor for the hash table.
         *hash table的负载因子
         * @serial
         */
        final float loadFactor;
    
        /* ---------------- Public operations -------------- */
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param  initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         *
         * @param   m the map whose mappings are to be placed in this map
         * @throws  NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    
        /**
         * Implements Map.putAll and Map constructor
         *
         * @param m the map
         * @param evict false when initially constructing this map, else
         * true (relayed to method afterNodeInsertion).
         *
         */
        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
            int s = m.size();
            if (s > 0) {
                //未初始化
                if (table == null) { // pre-size
                    float ft = ((float)s / loadFactor) + 1.0F;
                    int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                             (int)ft : MAXIMUM_CAPACITY);
                    if (t > threshold)
                        //tableSizeFor 返回最近的不小于输入参数的2的整数次幂
                        threshold = tableSizeFor(t);
                }
                //已经初始化了, 传入的元素实际个数大于当前设定的数组大小, 则扩容
                else if (s > threshold)
                    resize();
                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                    K key = e.getKey();
                    V value = e.getValue();
                    putVal(hash(key), key, value, false, evict);
                }
            }
        }
    
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    
        /**
         * Implements Map.get and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @return the node, or null if none
         */
        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            //数组不为null,数组长度要大于零,之后根据key或渠道数组元素Node不为零。
            // (n - 1) & hash 因n是为2的幂,(n - 1) & hash就是获取数组的某个下标。
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                    //先检查第一个元素是否否满足条件
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
               //是红黑红 则调用对应的查找方法
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);  //树中找
                  // 链表  循环直到找到下一个满足条件的 
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null); //链表中找
                }
            }
            return null;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains a mapping for the
         * specified key.
         *
         * @param   key   The key whose presence in this map is to be tested
         * @return <tt>true</tt> if this map contains a mapping for the specified
         * key.
         */
        public boolean containsKey(Object key) {
            return getNode(hash(key), key) != null;
        }
    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         */
        public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    
        /**
         * Implements Map.put and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to put
         * @param onlyIfAbsent if true, don't change existing value
         * @param evict if false, the table is in creation mode.
         * @return previous value, or null if none
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            //tab 未初始化或者长度为0,进行扩容  table 被延迟到插入新数据时再进行初始化
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((p = tab[i = (n - 1) & hash]) == null)// (n - 1) & hash 确定元素存放在哪个桶中,桶中不包含该节点的引用,新生成结点放入桶中
                tab[i] = newNode(hash, key, value, null);
            else {
                //数组当前位置有值了
                Node<K,V> e; K k;
                //如果存在相同的值, 就是链表一个值的hash和key相等, e指向该值
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                // 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    //// 对链表进行遍历,并统计链表长度
                    for (int binCount = 0; ; ++binCount) {
                        // 链表中不包含要插入的键值对节点时,则将该节点接在链表的最后
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            //树化操作
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        //包含要插入的key值,break终止遍历
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                //e 表示是否存在要插入的键值
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            //键值对数量超过阀值 进行扩容
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }
    
        /**
         * Initializes or doubles table size.  If null, allocates in
         * accord with initial capacity target held in field threshold.
         * Otherwise, because we are using power-of-two expansion, the
         * elements from each bin must either stay at same index, or move
         * with a power of two offset in the new table.
         *
         * @return the table
         */
         //扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去
        final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            //tab已经初始化过了
            if (oldCap > 0) {
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            }
            else if (oldThr > 0) // initial capacity was placed in threshold
            //有参数initialCapacity构造方法 初始化时 使用 threshold 变量暂时保存 initialCapacity 参数的值
                newCap = oldThr;
            else {    
            //无参数够着方法
            // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)
    MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})
             // 创建新的桶数组,桶数组的初始化也是在这里完成的
                Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
            if (oldTab != null) {
                //重新计算键值对的位置
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null)
                            //e.hash & (newCap - 1)  新位置在要们在之前的数组位置,要么在(之前的数组大小+之前的位置)
                            newTab[e.hash & (newCap - 1)] = e;
                        else if (e instanceof TreeNode)
                            //  // 重新映射时,需要对红黑树进行拆分
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // preserve order
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                // 遍历链表,并将链表节点按原顺序进行分组
                                //(e.hash & oldCap) == 0  在老数组的位置
                                //(e.hash & oldCap) == 1  在(老数组的位置 + oldcap大小)
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }
    }
    
    

    相关文章

      网友评论

          本文标题:HashMap重要源码解读

          本文链接:https://www.haomeiwen.com/subject/udagxqtx.html