美文网首页生信修炼Cook RR绘图
ggstatsplot- 做图与统计一块做了

ggstatsplot- 做图与统计一块做了

作者: xmu_zhang_lab | 来源:发表于2019-10-16 12:37 被阅读0次

    前言

    所谓一图胜千言: ""Information-rich graphic is worth a thousand words""
    ggstatsplot的理念非常简单:把数据的可视化与统计分析一块做了
    简单易用: ggplot2很强大, 但是,但是,太多的参数,细节。。,统计知识比较差的你表示:(
    --ggstatsplot 就是你的救星了。。。

    image.png

    1. 软件安装

    Install the ggstatsplot package from CRAN:

    utils::install.packages("ggstatsplot")
    

    Then you can get the development version of the package from Github:

    library(remotes)remotes::install_github("IndrajeetPatil/ggstatsplot", dependencies = FALSE)
    

    Load the needed packages-

    library(ggstatsplot)library(ggplot2)
    

    You are recommended to use the RStudioIDE, but you don't have to.

    2. 使用

    2.1 ggbetweenstats:分组数据分析

    2.1.1 ggbetweenstats - defaults

    ggbetweenstats(
      data = movies_long,
      x = mpaa, # > 2 groups
      y = rating,
      type = "p", # default
      messages = FALSE
    )
    
    image.png

    Changing the type of test

    • "p" → parametric
    • "np" → non-parametric
    • "r" → robust
    • "bf" → bayes factor

    2.1.2. ggbetweenstats - little code, rich details

    ggbetweenstats(
      data = movies_long,
      x = mpaa,
      y = rating
    )
    
    image.png

    Default information:

    • statistical details
    • Bayes Factor
    • sample sizes
    • distribution summary

    2.1.3. ggbetweenstats - pairwise comparisons

    ggbetweenstats(
      data = movies_long,
      x = mpaa,
      y = rating,
      type = "np",
      mean.ci = TRUE,
      pairwise.comparisons = TRUE,
      pairwise.display = "ns",
      p.adjust.method = "fdr",
      messages = FALSE
    )
    
    image.png

    Changing pairwise comparisons displayed

    • "ns" → only non-significant
    • "s" → only significant
    • "all" → everything

    2.1.4. ggbetweenstats - (aesthetic) changes & outlier

    ggbetweenstats(
      data = movies_long,
      x = mpaa,
      y = rating,
      type = "r",
      conf.level = 0.99,
      pairwise.comparisons = TRUE,
      pairwise.annotation = "p", 
      outlier.tagging = TRUE,
      outlier.label = title,
      outlier.coef = 2,
      ggtheme = hrbrthemes::theme_ipsum_tw(),
      palette = "Darjeeling2",
      package = "wesanderson",
      messages = FALSE
    )
    

    Aesthetic preferences are not an excuse to not use ggstatsplot 😻
    The default palette used is colorblind-

    2.1.5. ggbetweenstats - modification with ggplot2

    ggbetweenstats(
      data = movies_long,
      x = mpaa,
      y = rating,
      type = "bf",
      messages = FALSE
    ) + 
      scale_y_continuous(sec.axis = dup_axis())
    

    https://indrajeetpatil.github.io/ggstatsplot_slides/slides/ggstatsplot_presentation_files/figure-html/ggbetweenstats_4-1.png

    Note: You can modify all ggstatsplot plots further using ggplot2 functions. Yaay!

    2.1.6. Summary of tests - ggbetweenstats

    image.png

    Effect sizes + CI - ggbetweenstats


    image.png

    Pairwise comparion tests - ggbetweenstats


    image.png

    2.2. ggwithinstats :分组、条件数据分析,

    For within group/condition comparisons

    2.2.1. ggwithinstats - repeated measures equivalent

    ggwithinstats(
      data = WRS2::WineTasting,
      x = Wine,
      y = Taste,
      pairwise.comparisons = TRUE,
      pairwise.annotation = "p",
      ggtheme = hrbrthemes::theme_ipsum_tw(),
      ggstatsplot.layer = FALSE,
      messages = FALSE
    )
    
    image.png

    Changing the type of test

    • "p" → parametric
    • "np" → non-parametric
    • "r" → robust
    • "bf" → bayes factor

    2.2.2. ggwithinstats - little code, rich details

    ggwithinstats(
      data = WRS2::WineTasting,
      x = Wine, # > 2 groups
      y = Taste,
      pairwise.comparisons = TRUE,
      pairwise.annotation = "p",
      ggtheme = hrbrthemes::theme_ipsum_tw(),
      ggstatsplot.layer = FALSE,
      messages = FALSE
    )
    

    Default information:

    • statistical details
    • pairwise comparisons
    • sample sizes
    • distribution summary

    2.2.3. ggwithinstats - two groups,

    ggwithinstats(
      data = iris_long,
      x = attribute, # 2 groups
      y = value,
      type = "r",
      messages = FALSE
    )
    

    Changing the type of test

    • "p" → parametric
    • "np" → non-parametric
    • "r" → robust
    • "bf" → bayes factor

    2.3 ggscatterstats-散点图,双变量相关性分析

    Association between two numeric variables

    2.3.1 ggscatterstats - defaults

    ggscatterstats(
      data = movies_long,
      x = budget,
      y = rating,
      type = "p", # default #<<<
      conf.level = 0.99,
      messages = FALSE
    )
    
    image.png

    Changing the type of test

    • "p" → parametric
    • "np" → non-parametric
    • "r" → robust
    • "bf" → bayes factor

    2.3.2. ggscatterstats - little code, rich details

    ggscatterstats(
      data = movies_long,
      x = budget,
      y = rating,
      conf.level = 0.99
    )
    

    Default information:

    • distribution
    • Bayes Factor
    • statistical details

    2.3.3. ggscatterstats - conditional point tagging

    ggscatterstats(
      data = movies_long,
      x = budget,
      y = rating,
      type = "r", 
      centrality.para = "mean",
      label.var = title,
      label.expression = budget > 150
                         & rating > 7.5,
      marginal.type = "density",
      messages = FALSE
    )
    

    Changing the marginal type

    • histogram
    • boxplot
    • density
    • violin
    • densigram

    2.3.4. ggscatterstats - changing smoothing functions

    gscatterstats(
      data = movies_long,
      x = budget,
      y = rating,
      marginal = FALSE,  
      method = "gam",
      formula = y ~ s(x, k = 3),
      centrality.para = "mean",
      messages = FALSE
    )
    

    Available centrality parameters

    • mean
    • median

    2.4 ggcorrmat :数据交叉相关性分析

    2.4.1. ggcorrmat - defaults

    ggcorrmat(
      data = ggplot2::msleep,
      cor.vars = sleep_cycle:bodywt,
      type = "r",
      matrix.type = "upper",
      p.adjust.method = "holm",
      colors = NULL,
      package = "yarrr",
      palette = "southpark"
    )
    
    image.png

    Changing the type of test

    • "p" → parametric
    • "np" → non-parametric
    • "r" → robust
    • "bf" → not implemented

    2.4.2. ggcorrmat - little code, rich details

    ggcorrmat(data = dplyr::starwars)
    
    image.png

    Default information:
    statistical details
    sample sizes
    details about test
    Note: Informative label about sample sizes in case NAs are present.

    2.4.4. ggcorrmat - changing defaults

    ggcorrmat(
      data = ggplot2::msleep,
      cor.vars = sleep_cycle:bodywt,
      type = "r",
      matrix.type = "upper",
      p.adjust.method = "holm",
      colors = NULL,
      package = "yarrr",
      palette = "southpark"
    )
    
    image.png

    In addition to output = "plot", this function can also be used to get a dataframe of results:

    • "r" → correlation
    • "p" → p-values
      -"n" → sample sizes
    • "ci" → confidence intervals

    2.4.5. ggcorrmat - dataframe outputs

    correlation coefficients

      data = ggplot2::msleep,
      cor.vars = sleep_cycle:bodywt,
      type = "np",
      output = "r",
      p.adjust.method = "fdr",
      messages = FALSE
    )
    

    ** p-values**

    ggcorrmat(
      data = ggplot2::msleep,
      cor.vars = sleep_cycle:bodywt,
      type = "np",
      output = "p",
      p.adjust.method = "none",
      messages = FALSE
    )
    
    image.png

    ** sample sizes**

    ggcorrmat(
      data = ggplot2::msleep,
      cor.vars = sleep_cycle:bodywt,
      type = "np",
      output = "n",
      p.adjust.method = "fdr",
      messages = FALSE
    )
    
    image.png
    confidence intervals
    options(digits = 3)
    ggcorrmat(
      data = ggplot2::msleep,
      cor.vars = awake:bodywt,
      type = "np",
      output = "ci",
      p.adjust.method = "fdr",
      messages = FALSE
    )
    
    image.png

    2.5 gghistostats:密度图

    Distribution of a numeric variable

    2.5.1

    2.5.2. gghistostats - further customization

    gghistostats(
      data = movies_long,    
      x = budget,
      effsize.type = "d",
      test.value = 50,
      bar.measure = "mix",
      centrality.para = "median", 
      test.value.line = TRUE,
      normal.curve = TRUE,
      ggtheme = hrbrthemes::theme_ipsum_tw(), 
      ggstatsplot.layer = FALSE, 
      messages = FALSE
    )
    
    image.png

    Available bar measures

    • count
    • proportion
    • both (of the above)
    • density

    2.5.3. gghistostats - little code, rich details

    gghistostats(
      data = movies_long,    
      x = budget,
      effsize.type = "d",
      test.value = 50,
      test.value.size = TRUE, 
      bar.measure = "mix", 
      centrality.para = "median", 
      test.value.line = TRUE,
      normal.curve = TRUE
    )
    
    image.png

    Default information:

    • statistical details
    • Bayes Factor
    • frequency
    • distribution summary

    2.6. ggdotplotstats- 点图

    Distribution of a numeric variable with labels

    2.6.1. ggdotplotstats - defaults

    ggdotplotstats(
      data = movies_long,
      x = budget,
      y = genre,
      effsize.type = "d", 
      test.value = 52,
      centrality.para = "median", 
      test.value.line = TRUE,
      test.value.color = "red", 
      ggtheme = ggthemes::theme_par(),
      messages = FALSE
    )
    
    image.png

    Changing the type of test

    • "p" → parametric
    • "np" → non-parametric
    • "r" → robust
    • "bf" → bayes factor

    2.6.2. ggdotplotstats - little code, rich details

    ggdotplotstats(
      data = movies_long,
      x = budget,
      y = genre,
      effsize.type = "d",
      test.value = 52,     
      centrality.para = "median", 
      test.value.line = TRUE, 
      test.value.color = "red"
    )
    
    image.png

    Default information:

    • statistical details
    • Bayes Factor
    • distribution summary

    2.6.3 Summary of tests - gghistostats/ggdotplotstats

    image.png

    2.7 ggpiestats: 饼图

    For composition of categorical variables

    2.7.1 ggpiestats - defaults

    # let's use subset of data
    ggpiestats(
      data = dplyr::filter(.data = movies_long, 
      genre %in% c("Drama", "Comedy", "Animated")), 
      x = genre,
      y =  mpaa,
      paired = FALSE, # default
      conf.level = 0.99,
      package = "ggsci",
      palette = "default_ucscgb",
      messages = FALSE
    )
    
    image.png

    Test by design

    • paired = FALSE → Pearson's χ2
    • paired = TRUE → McNemar

    2.7.2 ggpiestats - little code, rich details

    # let's use subset of data
    ggpiestats(
      data = dplyr::filter(movies_long, 
      genre %in% c("Drama", "Comedy", "Animated")), 
      x = genre,
      y =  mpaa,
      conf.level = 0.99
    )
    
    image.png

    Default information:

    • statistical details
    • Bayes Factor
    • sample sizes
    • proportion test results

    2.7.3 ggpiestats - proportion test

    ggpiestats(
      data = as.data.frame(Titanic), 
      x = Survived,
      counts = Freq,
      slice.label = "both",
      messages = FALSE
    )
    
    image.png

    Note: If the data is in tabled format, you can use the counts argument.
    Test by analysis

    • condition != NULL → contingency table
    • y = = NULL → goodness of fit

    2.8. ggbarstats: 条形图-不同变量比较

    For composition of categorical variables

    2.8.1 ggbarstats - defaults

    ggbarstats(
      data = movies_long, 
      x = genre,
      y =  mpaa,
      paired = FALSE, # default
      package = "ggsci",
      palette = "default_igv",
      caption = substitute(
        paste(italic("Source"), ": www.imdb.com")
      ),
      messages = FALSE
    )
    
    image.png

    Note: Even if you display Bayes Factor message in a caption, you can still use the caption argument.
    Label information

    • percentage (default)
    • counts
    • both (of the above)

    2.8.2. ggbarstats - little code, rich details

    ggbarstats(
      data = movies_long, 
      x = genre,
      y =  mpaa
    )
    
    image.png

    Default information:

    • statistical details
    • Bayes Factor
    • sample sizes
    • proportion test results

    2.8.3 Test summary - ggpiestats/ggbarstats

    image.png

    2.9. ggcoefstats: 数据拟合、建模

    Displaying results from regression analyses

    2.9.1 ggcoefstats - defaults

    # model
    mod <- stats::aov(
      formula = rating ~ mpaa * genre,
      data = movies_long
    )
    # plot
    ggcoefstats(x = mod)
    
    image.png

    In addition to output = "plot", this function can also be used to get a dataframe of results:

    • "tidy" → estimates
    • "glance" → model summary
    • "augment" → predictions

    2.9.2 ggcoefstats - little code, rich details

    Default information:

    • estimate + 95% CI
      -model summary
    • statistical details


      image.png

    2.9.3. ggcoefstats - dataframe outputs

    model summary

    library(lme4)
    # model
    mod1 <- 
      lme4::lmer(formula = Reaction ~ Days + (Days | Subject),
                 data = sleepstudy)
    # dataframe
    ggcoefstats(x = mod1, 
                output = "glance")
    
    image.png
    augmented dataframe
    library(ordinal)
    # model
    mod2 <- clm(formula = rating ~ temp * contact, 
                data = wine)
    # dataframe
    ggcoefstats(x = mod2, 
                output = "augment") %>%
      head(5)
    
    image.png

    2.9.4. ggcoefstats: Supported models

    image.png

    2.9.5. ggcoefstats: If not implemented, use a dataframe

    # dataframe with results
    df <- tibble::tribble(
      ~term, ~estimate, ~std.error, ~statistic, ~p.value,
      "(Intercept)", 3.77, 0.165, 22.9, 1.49e-20,
      "x", -1.36, 0.258, -5.26, 1.13e-5
    )
    # plot
    # `statistic` argument decides label format
    ggcoefstats(
      x = df,
      statistic = "z",
      exclude.intercept = FALSE
    )
    

    Supported statistic (for dataframe objects):

    • t
      -z
    • F
      At the minimum, two columns needed - term and estimate.

    2.9.6 ggcoefstats: You can also do meta-analysis!

    # made up data
    meta_df <- tibble::tribble(
      ~term, ~estimate, ~std.error,
      "study_1", 0.111, 0.065,
      "study_2", -0.003, 0.258,
      "study_3", 0.001, 0.120,
      "study_4", 0.032, 0.022,
      "study_5", -0.765, 0.650,
      "study_6", -0.032, 0.058
    )
    # plot
    ggcoefstats(
      x = meta_df,
      meta.analytic.effect = TRUE,
      bf.message = TRUE,
      xlab = "estimate"
    )
    
    image.png

    Frequentist random-effects meta-analysis from metafor
    Bayesian random-effects meta-analysis from metaBMA

    2.10. grouped_ variants of all functions

    Running the same function for all levels of a single grouping variable

    2.10.1. grouped_ functions

    # only one additional argument
    grouped_ggpiestats(
      data = mtcars, 
      x = cyl,
      grouping.var = am,
      results.subtitle = FALSE,
      messages = FALSE
    )
    
    image.png

    vailable grouped_ variants

    • grouped_ggdotplotstats
    • grouped_ggbarstats
    • grouped_ggscatterstats
    • grouped_gghistostats
    • grouped_ggpiestats
    • grouped_ggbetweenstats
    • grouped_ggwithinstats
    • grouped_ggcorrmat

    2.11 Utility beyond ggstatsplot

    What if I don't like the default plots but still want to display statistical results?

    2.11.1 Using as helper functions

    ggstatsplot can also be used just to get the statistical details.

    # using `ggstatsplot` for stats
    results <- 
      ggstatsplot::ggpiestats(  
      data = Titanic_full,
      x = Survived,
      y =  Sex,
      return = "subtitle",
      messages = FALSE
    )
    # using `ggiraphExtra` for plot
    ggiraphExtra::ggSpine(
      data = Titanic_full,
      aes(x = Sex, fill = Survived),
      addlabel = TRUE,
      interactive = FALSE
    ) + labs(subtitle = results)
    
    image.png

    All included analyses have their corresponding helper functions for preparing subtitles with statistical details.

    2.12 Glossary

    Statistical reporting in ggstatsplot

    2.12.1. Best practices in reporting statistical details

    • As discussed before, the details included in statistical analyses follow the APA gold standard.
    • The default tests follow the best practices. For example, ggbetweenstats function by default runs Welch's t-test and Welch's ANOVA - and not Student's t-test and Fisher's ANOVA - based on recent work (Delacre et al., 2017, 2018).
    • No p-value error
      (Lilienfeld et al., 2015)

    2.12.2 Avoiding errors

    Since the plot and the statistical analysis are yoked together, the chances of making an error in reporting the results are minimized. You never have to write the results manually or copy-paste them from someplace else.


    image.png

    2.12.3 Making sense of null results

    Combination of frequentist and Bayesian statistics for each analysis to properly interpret the null results.


    image.png

    2.12.4. Toggling between type of statistics

    image.png

    3. Types of statistical analyses supported

    image.png

    4. Effect sizes + CI available?

    image.png

    5. Benefits of using ggstatsplot

    Truly makes your figures worth a thousand words.
    No need to copy-paste results to the text editor (MS-Word, e.g.).
    Disembodied figures stand on their own and are easy to evaluate for the reader.
    More breathing room for theoretical discussion and other text.
    No need to worry about updating figures and statistical details separately if something about the data changes.
    Minimal amount of code needed for all functions (typically only data, x, and y). This minimizes chances of error.

    6. Limitations

    Limited kinds of plots available.
    Limited number of statistical tests (and effect sizes) available.
    Faceting (or small multiples) not implemented.
    Default plots can be too complicated for effectively communicating results in time-constrained presentation settings (e.g., conference talks).

    Bulky API (in terms of number of function arguments to keep in mind).
    (Saving grace: Defaults are sufficient most of the time.)

    7. Exhaustive documentation at the dedicated website-

    https://indrajeetpatil.github.io/ggstatsplot/

    相关文章

      网友评论

        本文标题:ggstatsplot- 做图与统计一块做了

        本文链接:https://www.haomeiwen.com/subject/udyymctx.html