美文网首页
Android中为什么主线程不会因为Looper.loop()里

Android中为什么主线程不会因为Looper.loop()里

作者: 柒黍 | 来源:发表于2017-01-19 15:45 被阅读0次
    首先,结论是主线程确实阻塞了,但是主线程在初始化过程中由ActivityThread的main()方法中会创建一套消息循环组件包括Looper,MessageQueue,Handler,然后由MessageQueue中的next()调用底层MessageQueue,通过epoll进行阻塞,有主线程消息的时候通过发送消息激活主线程.

    Looper 中的 loop() 方法是如何实现阻塞的呢?
    大家有没有想过一个问题啊,就是loop是一个循环,不停的去轮询消息池,如果消息池为空呢,它还会工作吗?如果消息池为空就不会轮询了,就阻塞了,如果突然来了消息呢,怎么就又开始工作了呢(哈哈,这好像是个面试题)
    好吧,让我们看看到底怎么处理这个问题的,其实关键就在心系两界的MessageQueue

    MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        nativeInit();
    }
    

    它通过转调 native 方法 nativeInit() 实现的,后者是定义在 android_os_MessageQueue.cpp 中:

    static voidandroid_os_MessageQueue_nativeInit(JNIEnv* env, jobject obj) {
        // NativeMessageQueue是MessageQueue在Native层的代表
        NativeMessageQueue* nativeMessageQueue = newNativeMessageQueue();
        ......
        // 将这个NativeMessageQueue对象设置到Java层保存
        android_os_MessageQueue_setNativeMessageQueue(env,obj,nativeMessageQueue);
    }
    

    nativeInit函数在Native层创建了一个与MessageQueue对应的NativeMessageQueue对象,其构造函数如下:
    [android_os_MessageQueue.cpp–>NativeMessageQueue::NativeMessageQueue()]

    NativeMessageQueue::NativeMessageQueue() {
        /* 代表消息循环的Looper也在Native层中呈现身影了。根据消息驱动的知识,一个线程会有一个
          Looper来循环处理消息队列中的消息。下面一行的调用就是取得保存在线程本地存储空间
         (Thread Local Storage)中的Looper对象 */
        mLooper= Looper::getForThread();
        if (mLooper == NULL) {
            /* 如为第一次进来,则该线程没有设置本地存储,所以须先创建一个Looper,然后再将其保存到
              TLS中,这是很常见的一种以线程为单位的单例模式*/
            mLooper = new Looper(false);
            Looper::setForThread(mLooper);
        }
    }
    

    Native的Looper是Native世界中参与消息循环的一位重要角色。虽然它的类名和Java层的Looper类一样,但此二者其实并无任何关系。这一点以后还将详细分析。
    提取消息
    当一切准备就绪后,Java层的消息循环处理,也就是Looper会在一个循环中提取并处理消息。消息的提取就是调用MessageQueue的next()方法。当消息队列为空时,next就会阻塞。MessageQueue同时支持Java层和Native层的事件,那么其next()方法该怎么实现呢?具体代码如下:

    final Message next() {
        int pendingIdleHandlerCount = -1;
        int nextPollTimeoutMillis = 0;
        for (;;) {
            ......
            // mPtr保存了NativeMessageQueue的指针,调用nativePollOnce进行等待
            nativePollOnce(mPtr,nextPollTimeoutMillis);
            synchronized (this) {
                final long now = SystemClock.uptimeMillis();
                // mMessages用来存储消息,这里从其中取一个消息进行处理
                final Message msg = mMessages;
                if (msg != null) {
                    final long when = msg.when;
                    if (now >= when) {
                        mBlocked = false;
                        mMessages = msg.next;
                        msg.next = null;
                        msg.markInUse();
                        return msg; // 返回一个Message给Looper进行派发和处理
                   } else {
                        nextPollTimeoutMillis = (int) Math.min(when- now,Integer.MAX_VALUE);
                    }
                } else {
                    nextPollTimeoutMillis = -1;
                }
                ......
                /* 处理注册的IdleHandler,当MessageQueue中没有Message时,
               Looper会调用IdleHandler做一些工作,例如做垃圾回收等  */
               ......
               pendingIdleHandlerCount = 0;
               nextPollTimeoutMillis = 0;
            }
        }
    }
    

    看到这里,可能会有人觉得这个MessageQueue很简单,不就是从以前在Java层的wait变成现在Native层的wait了吗?但是事情本质比表象要复杂得多,来思考下面的情况:
    nativePollOnce()返回后,next()方法将从mMessages中提取一个消息。也就是说,要让nativePollOnce()返回,至少要添加一个消息到消息队列,否则nativePollOnce()不过是做了一次无用功罢了。
    如果nativePollOnce()将在Native层等待,就表明Native层也可以投递Message,但是从Message类的实现代码上看,该类和Native层没有建立任何关系。那么nativePollOnce()在等待什么呢?
    对于上面的问题,相信有些读者心中已有了答案:nativePollOnce()不仅在等待Java层来的Message,实际上还在Native还做了大量的工作。
    下面我们来分析Java层投递Message并触发nativePollOnce工作的正常流程。

    在Java层投递Message
    MessageQueue的enqueueMessage函数完成将一个Message投递到MessageQueue中的工作,其代码如下:

    final boolean enqueueMessage(Message msg, longwhen) {
        ......
        finalboolean needWake;
        synchronized (this) {
            if(mQuiting) {
               return false;
            }else if (msg.target == null) {
               mQuiting = true;
            }
           msg.when = when;
           Message p = mMessages;
            if(p == null || when == 0 || when < p.when) {
               /* 如果p为空,表明消息队列中没有消息,那么msg将是第一个消息,needWake
                 需要根据mBlocked的情况考虑是否触发 */
               msg.next= p;
               mMessages = msg;
               needWake = mBlocked;
            } else {
               // 如果p不为空,表明消息队列中还有剩余消息,需要将新的msg加到消息尾
               Message prev = null;
               while (p != null && p.when <= when) {
                   prev = p;
                   p = p.next;
               }
               msg.next = prev.next;
               prev.next = msg;
               // 因为消息队列之前还剩余有消息,所以这里不用调用nativeWakeup
               needWake = false;
            }
        }
        if(needWake) {
            // 调用nativeWake,以触发nativePollOnce函数结束等待
           nativeWake(mPtr);
        }
        returntrue;
    }
    

    上面的代码比较简单,主要功能是:
    将message按执行时间排序,并加入消息队。
    根据情况调用nativeWake函数,以触发nativePollOnce函数,结束等待。建议 虽然代码简单,但是对于那些不熟悉多线程的读者,还是要细细品味一下mBlocked值的作用。我们常说细节体现美,代码也一样,这个小小的mBlocked正是如此。

    nativeWake函数分析
    nativeWake函数的代码如下所示:

    static voidandroid_os_MessageQueue_nativeWake(JNIEnv* env, jobject obj, jint ptr){
       NativeMessageQueue* nativeMessageQueue = // 取出NativeMessageQueue对象
                          reinterpret_cast<NativeMessageQueue*>(ptr);
        returnnativeMessageQueue->wake(); // 调用它的wake函数
    }
    void NativeMessageQueue::wake() {
       mLooper->wake(); // 层层调用,现在转到mLooper的wake函数
    }
    //Native Looper的wake函数代码如下:
    void Looper::wake() {
        ssize_tnWrite;
        do {
            // 向管道的写端写入一个字符
           nWrite = write(mWakeWritePipeFd, "W", 1);
        } while(nWrite == -1 && errno == EINTR);
    }
    

    Wake()函数则更为简单,仅仅向管道的写端写入一个字符”W”,这样管道的读端就会因为有数据可读而从等待状态中醒来。


    nativePollOnce函数分析
    nativePollOnce()的实现函数是android_os_MessageQueue_nativePollOnce,代码如下:

    static voidandroid_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
            jintptr, jint timeoutMillis)
        NativeMessageQueue* nativeMessageQueue =
                               reinterpret_cast<NativeMessageQueue*>(ptr);
        // 取出NativeMessageQueue对象,并调用它的pollOnce
       nativeMessageQueue->pollOnce(timeoutMillis);
    }
    

    分析pollOnce函数:

    void NativeMessageQueue::pollOnce(inttimeoutMillis) {
       mLooper->pollOnce(timeoutMillis); // 重任传递到Looper的pollOnce函数
    }
    

    Looper的pollOnce函数如下:

    inline int pollOnce(int timeoutMillis) {
        returnpollOnce(timeoutMillis, NULL, NULL, NULL);
    }
    

    上面的函数将调用另外一个有4个参数的pollOnce函数,这个函数的原型如下:int pollOnce(int timeoutMillis, int* outFd, intoutEvents, void* outData)
    其中:
    timeOutMillis参数为超时等待时间。如果为-1,则表示无限等待,直到有事件发生为止。如果值为0,则无需等待立即返回。
    outFd用来存储发生事件的那个文件描述符 。
    outEvents用来存储在该文件描述符1上发生了哪些事件,目前支持可读、可写、错误和中断4个事件。这4个事件其实是从epoll事件转化而来。后面我们会介绍大名鼎鼎的epoll。
    outData用于存储上下文数据,这个上下文数据是由用户在添加监听句柄时传递的,它的作用和pthread_create函数最后一个参数param一样,用来传递用户自定义的数据。
    另外,pollOnce函数的返回值也具有特殊的意义,具体如下:
    当返回值为ALOOPER_POLL_WAKE时,表示这次返回是由wake函数触发的,也就是管道写端的那次写事件触发的。
    返回值为ALOOPER_POLL_TIMEOUT表示等待超时。
    返回值为ALOOPER_POLL_ERROR,表示等待过程中发生错误。
    返回值为ALOOPER_POLL_CALLBACK,表示某个被监听的句柄因某种原因被触发。这时,outFd参数用于存储发生事件的文件句柄,outEvents用于存储所发生的事件。
    上面这些知识是和epoll息息相关的。
    提示 查看Looper的代码会发现,Looper采用了编译选项(即#if和#else)来控制是否使用epoll作为I/O复用的控制中枢。鉴于现在大多数系统都支持epoll,这里仅讨论使用epoll的情况。

    epoll基础知识介绍:

    epoll机制提供了Linux平台上最高效的I/O复用机制,因此有必要介绍一下它的基础知识。
    从调用方法上看,epoll的用法和select/poll非常类似,其主要作用就是I/O复用,即在一个地方等待多个文件句柄的I/O事件。
    下面通过一个简单例子来分析epoll的工作流程。

     /* ① 使用epoll前,需要先通过epoll_create函数创建一个epoll句柄。
      下面一行代码中的10表示该epoll句柄初次创建时候分配能容纳10个fd相关信息的缓存。
      对于2.6.8版本以后的内核,该值没有实际作用,这里可以忽略。其实这个值的主要目的是
      确定分配一块多大的缓存。现在的内核都支持动态拓展这块缓存,所以该值就没有意义了 */
        int epollHandle = epoll_create(10);
        /* ② 得到epoll句柄后,下一步就是通过epoll_ctl把需要监听的文件句柄加入到epoll句柄中。
          除了指定文件句柄本身的fd值外,同时还需要指定在该fd上等待什么事件。epoll支持四类事件,
          分别是EPOLLIN(句柄可读)、EPOLLOUT(句柄可写),EPOLLERR(句柄错误)、EPOLLHUP(句柄断)。
          epoll定义了一个结构体struct epoll_event来表达监听句柄的诉求。
          假设现在有一个监听端的socket句柄listener,要把它加入到epoll句柄中 */
        struct epoll_event
        listenEvent; //先定义一个event
    /* EPOLLIN表示可读事件,EPOLLOUT表示可写事件,另外还有EPOLLERR,EPOLLHUP表示
      系统默认会将EPOLLERR加入到事件集合中 */
        listenEvent.events=EPOLLIN;// 指定该句柄的可读事件
    // epoll_event中有一个联合体叫data,用来存储上下文数据,本例的上下文数据就是句柄自己
        listenEvent.data.fd=listenEvent;
    
        /* ③ EPOLL_CTL_ADD将监听fd和监听事件加入到epoll句柄的等待队列中;
          EPOLL_CTL_DEL将监听fd从epoll句柄中移除;
          EPOLL_CTL_MOD修改监听fd的监听事件,例如本来只等待可读事件,现在需要同时等待
          可写事件,那么修改listenEvent.events 为EPOLLIN|EPOLLOUT后,再传给epoll句柄*/
        epoll_ctl(epollHandle, EPOLL_CTL_ADD, listener, &listenEvent);
    
        /* 当把所有感兴趣的fd都加入到epoll句柄后,就可以开始坐等感兴趣的事情发生了。
          为了接收所发生的事情,先定义一个epoll_event数组 */
        struct epoll_event
        resultEvents[10];
        int timeout = -1;
        while(1)
    
        {
       /* ④ 调用epoll_wait用于等待事件。其中timeout可以指定一个超时时间,
         resultEvents用于接收发生的事件,10为该数组的大小。
         epoll_wait函数的返回值有如下含义:
         nfds大于0表示所监听的句柄上有事件发生;
         nfds等于0表示等待超时;
         nfds小于0表示等待过程中发生了错误*/
            int nfds = epoll_wait(epollHandle, resultEvents, 10, timeout);
            if (nfds == -1) {
                // epoll_wait发生了错误
            } else if (nfds == 0) {
                //发生超时,期间没有发生任何事件
            } else {
                // ⑤resultEvents用于返回那些发生了事件的信息
                for (int i = 0; i < nfds; i++) {
                    struct epoll_event&event = resultEvents[i];
                    if (event & EPOLLIN) {
                  /*⑥ 收到可读事件。到底是哪个文件句柄发生该事件呢?可通过event.data这个联合
                   体取得 前传递给epoll的上下文数据,该上下文信息可用于判断到底是谁发生了事件*/
                        ......
                    }
                    .......//其他处理
                }
            }
        }
    

    epoll整体使用流程如上面代码所示,基本和select/poll类似,不过作为Linux平台最高效的I/O复用机制,这里有些内容供读者参考,
    epoll的效率为什么会比select高?其中一个原因是调用方法。每次调用select时,都需要把感兴趣的事件复制到内核中,而epoll只在epll_ctl进行加入的时候复制一次。另外,epoll内部用于保存事件的数据结构使用的是红黑树,查找速度很快。而select采用数组保存信息,不但一次能等待的句柄个数有限,并且查找起来速度很慢。当然,在只等待少量文件句柄时,select和epoll效率相差不是很多,但还是推荐使用epoll。
    epoll等待的事件有两种触发条件,一个是水平触发(EPOLLLEVEL),另外一个是边缘触发(EPOLLET,ET为Edge Trigger之意),这两种触发条件的区别非常重要。读者可通过man epoll查阅系统提供的更为详细的epoll机制。

    pollOnce()函数分析
    下面分析带4个参数的pollOnce()函数,代码如下:

    int Looper::pollOnce(int timeoutMillis, int*outFd, int* outEvents,
    void** outData) {
        intresult = 0;
        for(;;) { // 一个无限循环
            // mResponses是一个Vector,这里首先需要处理response
           while (mResponseIndex < mResponses.size()) {
               const Response& response = mResponses.itemAt(mResponseIndex++);
               ALooper_callbackFunc callback = response.request.callback;
                if (!callback) {// 首先处理那些没有callback的Response
                   int ident = response.request.ident; // ident是这个Response的id
                   int fd = response.request.fd;
                   int events = response.events;
                   void* data = response.request.data;
                   ......
                   if (outFd != NULL) * outFd = fd;
                   if (outEvents != NULL) * outEvents = events;
                   if (outData != NULL) * outData = data;
                   / * 实际上,对于没有callback的Response,pollOnce只是返回它的
                     ident,并没有实际做什么处理。因为没有callback,所以系统也不知道如何处理 * /
                   return ident;
               }
            }
            if(result != 0) {
                if(outFd != NULL) * outFd = 0;
               if (outEvents != NULL) * outEvents = NULL;
                if (outData != NULL) * outData = NULL;
               return result;
            }
            // 调用pollInner函数。注意,它在for循环内部
           result = pollInner(timeoutMillis);
        }
    }
    

    初看上面的代码,可能会让人有些丈二和尚摸不着头脑。但是把pollInner()函数分析完毕,大家就会明白很多。pollInner()函数非常长,把用于调试和统计的代码去掉,结果如下:

    int Looper::pollInner(int timeoutMillis) {
        if(timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
           nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
           ......//根据Native Message的信息计算此次需要等待的时间
           timeoutMillis = messageTimeoutMillis;
        }
        intresult = ALOOPER_POLL_WAKE;
        mResponses.clear();
        mResponseIndex = 0;
    #ifdef LOOPER_USES_EPOLL  // 只讨论使用epoll进行I/O复用的方式
        structepoll_event eventItems[EPOLL_MAX_EVENTS];
        // 调用epoll_wait,等待感兴趣的事件或超时发生
        inteventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS,
                                         timeoutMillis);
    #else
        ......//使用别的方式进行I/O复用
    #endif
        //从epoll_wait返回,这时候一定发生了什么事情
        mLock.lock();
        if(eventCount < 0) { //返回值小于零,表示发生错误
            if(errno == EINTR) {
               goto Done;
            }
            //设置result为ALLOPER_POLL_ERROR,并跳转到Done
           result = ALOOPER_POLL_ERROR;
            gotoDone;
        }
        //eventCount为零,表示发生超时,因此直接跳转到Done
        if(eventCount == 0) {
          result = ALOOPER_POLL_TIMEOUT;
            gotoDone;
        }
    #ifdef LOOPER_USES_EPOLL
        // 根据epoll的用法,此时的eventCount表示发生事件的个数
        for (inti = 0; i < eventCount; i++) {
            intfd = eventItems[i].data.fd;
            uint32_t epollEvents = eventItems[i].events;
            / * 之前通过pipe函数创建过两个fd,这里根据fd知道是管道读端有可读事件。
             读者还记得对nativeWake函数的分析吗?在那里我们向管道写端写了一个”W”字符,这样
             就能触发管道读端从epoll_wait函数返回了 * /
            if(fd == mWakeReadPipeFd) {
               if (epollEvents & EPOLLIN) {
                    // awoken函数直接读取并清空管道数据,读者可自行研究该函数
                   awoken();
               }
                ......
            }else {
              / * mRequests和前面的mResponse相对应,它也是一个KeyedVector,其中存储了
               fd和对应的Request结构体,该结构体封装了和监控文件句柄相关的一些上下文信息,
                例如回调函数等。我们在后面的小节会再次介绍该结构体 * /
               ssize_t requestIndex = mRequests.indexOfKey(fd);
               if (requestIndex >= 0) {
                   int events = 0;
                   // 将epoll返回的事件转换成上层LOOPER使用的事件
                   if (epollEvents & EPOLLIN) events |= ALOOPER_EVENT_INPUT;
                   if (epollEvents & EPOLLOUT) events |= ALOOPER_EVENT_OUTPUT;
                   if (epollEvents & EPOLLERR) events |= ALOOPER_EVENT_ERROR;
                   if (epollEvents & EPOLLHUP) events |= ALOOPER_EVENT_HANGUP;
                   // 每处理一个Request,就相应构造一个Response
                   pushResponse(events, mRequests.valueAt(requestIndex));
               }
                ......
            }
        }
    Done: ;
    #else
         ......
    #endif
        // 除了处理Request外,还处理Native的Message
        mNextMessageUptime = LLONG_MAX;
        while(mMessageEnvelopes.size() != 0) {
           nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
           const MessageEnvelope& messageEnvelope =mMessageEnvelopes.itemAt(0);
            if(messageEnvelope.uptime <= now) {
               {
                   sp<MessageHandler> handler = messageEnvelope.handler;
                   Message message = messageEnvelope.message;
                   mMessageEnvelopes.removeAt(0);
                   mSendingMessage = true;
                   mLock.unlock();
                   / * 调用Native的handler处理Native的Message
                    从这里也可看出Native Message和Java层的Message没有什么关系 * /
                   handler->handleMessage(message);
               }
               mLock.lock();
               mSendingMessage = false;
               result = ALOOPER_POLL_CALLBACK;
            }else {
                mNextMessageUptime = messageEnvelope.uptime;
                break;
            }
        }
        mLock.unlock();
        // 处理那些带回调函数的Response
        for (size_t i = 0; i < mResponses.size();i++) {
           const Response& response = mResponses.itemAt(i);
           ALooper_callbackFunc callback = response.request.callback;
            if(callback) {// 有了回调函数,就能知道如何处理所发生的事情了
               int fd = response.request.fd;
               int events = response.events;
               void* data = response.request.data;
               // 调用回调函数处理所发生的事件
               int callbackResult = callback(fd, events, data);
               if (callbackResult == 0) {
                   // callback函数的返回值很重要,如果为0,表明不需要再次监视该文件句柄
                    removeFd(fd);
               }
               result = ALOOPER_POLL_CALLBACK;
            }
        }
        returnresult;
    }
    

    看完代码了,是否还有点模糊?那么,回顾一下pollInner函数的几个关键点:
    首先需要计算一下真正需要等待的时间。
    调用epoll_wait函数等待。
    epoll_wait函数返回,这时候可能有三种情况:
    发生错误,则跳转到Done处。
    超时,这时候也跳转到Done处。
    epoll_wait监测到某些文件句柄上有事件发生。
    假设epoll_wait因为文件句柄有事件而返回,此时需要根据文件句柄来分别处理:
    如果是管道读这一端有事情,则认为是控制命令,可以直接读取管道中的数据。
    如果是其他FD发生事件,则根据Request构造Response,并push到Response数组中。
    真正开始处理事件是在有Done标志的位置。
    首先处理Native的Message。调用Native Handler的handleMessage处理该Message。
    处理Response数组中那些带有callback的事件。
    上面的处理流程还是比较清晰的,但还是有个一个拦路虎,那就是mRequests,下面就来清剿这个拦路虎。

    添加监控请求
    添加监控请求其实就是调用epoll_ctl增加文件句柄。下面通过从Native的Activity找到的一个例子来分析mRequests。

    static jint
    loadNativeCode_native(JNIEnv* env, jobject clazz,jstring path,
                              jstringfuncName,jobject messageQueue,
                              jstringinternalDataDir, jstring obbDir,
                              jstringexternalDataDir, int sdkVersion,
                              jobject jAssetMgr,jbyteArray savedState)
    {
        ......
        / * 调用Looper的addFd函数。第一个参数表示监听的fd;第二个参数0表示ident;
          第三个参数表示需要监听的事件,这里为只监听可读事件;第四个参数为回调函数,当该fd发生
          指定事件时,looper将回调该函数;第五个参数code为回调函数的参数 * /
        code->looper->addFd(code->mainWorkRead,0,
                              ALOOPER_EVENT_INPUT,mainWorkCallback, code);
      ......
    }
    

    Looper的addFd()代码如下所示:

    int Looper::addFd(int fd, int ident, int events,
                          ALooper_callbackFunccallback, void* data) {
        if (!callback) {
             / * 判断该Looper是否支持不带回调函数的文件句柄添加。一般不支持,因为没有回调函数
               Looper也不知道如何处理该文件句柄上发生的事情 * /
             if(! mAllowNonCallbacks) {
               return -1;
            }
          ......
        }
    #ifdef LOOPER_USES_EPOLL
        intepollEvents = 0;
        // 将用户的事件转换成epoll使用的值
        if(events & ALOOPER_EVENT_INPUT) epollEvents |= EPOLLIN;
        if(events & ALOOPER_EVENT_OUTPUT) epollEvents |= EPOLLOUT;
        {
           AutoMutex _l(mLock);
           Request request; // 创建一个Request对象
           request.fd = fd; // 保存fd
           request.ident = ident; // 保存id
           request.callback = callback; //保存callback
           request.data = data;  // 保存用户自定义数据
           struct epoll_event eventItem;
           memset(& eventItem, 0, sizeof(epoll_event));
           eventItem.events = epollEvents;
           eventItem.data.fd = fd;
           // 判断该Request是否已经存在,mRequests以fd作为key值
           ssize_t requestIndex = mRequests.indexOfKey(fd);
           if(requestIndex < 0) {
               // 如果是新的文件句柄,则需要为epoll增加该fd
               int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem);
               ......
               // 保存Request到mRequests键值数组
               mRequests.add(fd, request);
           }else {
               // 如果之前加过,那么就修改该监听句柄的一些信息
               int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_MOD, fd, &eventItem);
              ......
               mRequests.replaceValueAt(requestIndex, request);
           }
        }
    #else
        ......
    #endif
        return1;
    }
    

    处理监控请求
    我们发现在pollInner()函数中,当某个监控fd上发生事件后,就会把对应的Request取出来调用。
    pushResponse(events, mRequests.itemAt(i));
    此函数如下:

    void Looper::pushResponse(int events, constRequest& request) {
        Responseresponse;
        response.events = events;
        response.request = request; //其实很简单,就是保存所发生的事情和对应的Request
        mResponses.push(response);//然后保存到mResponse数组
    }
    

    根据前面的知识可知,并不是单独处理Request,而是需要先收集Request,等到Native Message消息处理完之后再做处理。这表明,在处理逻辑上,Native Message的优先级高于监控FD的优先级。下面来了解如何添加Native的Message。

    Native的sendMessage
    Android 2.2中只有Java层才可以通过sendMessage()往MessageQueue中添加消息,从4.0开始,Native层也支持sendMessage()了。sendMessage()的代码如下:

    
    void Looper::sendMessage(constsp<MessageHandler>& handler,
                                  constMessage& message) {
        //Native的sendMessage函数必须同时传递一个Handler
        nsecs_tnow = systemTime(SYSTEM_TIME_MONOTONIC);
       sendMessageAtTime(now, handler, message); //调用sendMessageAtTime
    }
    void Looper::sendMessageAtTime(nsecs_t uptime,
                                         constsp<MessageHandler>& handler,
                                         constMessage& message) {
        size_t i= 0;
        {
           AutoMutex _l(mLock);
           size_t messageCount = mMessageEnvelopes.size();
            // 按时间排序,将消息插入到正确的位置上
           while (i < messageCount &&
                   uptime >= mMessageEnvelopes.itemAt(i).uptime) {
               i += 1;
            }
           MessageEnvelope messageEnvelope(uptime, handler, message);
           mMessageEnvelopes.insertAt(messageEnvelope, i, 1);
            // mSendingMessage和Java层中的那个mBlocked一样,是一个小小的优化措施
            if(mSendingMessage) {
               return;
            }
        }
        // 唤醒epoll_wait,让它处理消息
        if (i ==0) {
           wake();
        }
    }
    

    MessageQueue总结

    1.消息处理的大家族合照MessageQueue只是消息处理大家族的一员,该家族的成员合照如图

    结合前述内容可从图中得到:

    Java层提供了Looper类和MessageQueue类,其中Looper类提供循环处理消息的机制,MessageQueue类提供一个消息队列,以及插入、删除和提取消息的函数接口。另外,Handler也是在Java层常用的与消息处理相关的类。

    MessageQueue内部通过mPtr变量保存一个Native层的NativeMessageQueue对象,mMessages保存来自Java层的Message消息。
    NativeMessageQueue保存一个native的Looper对象,该Looper从ALooper派生,提供pollOnce和addFd等函数。

    Java层有Message类和Handler类,而Native层对应也有Message类和MessageHandler抽象类。在编码时,一般使用的是MessageHandler的派生类WeakMessageHandler类。注意 在include/media/stagfright/foundation目录下也定义了一个ALooper类,它是供stagefright使用的类似Java消息循环的一套基础类。这种同名类的产生,估计是两个事先未做交流的Group的人写的。

    2.MessageQueue处理流程总结

    MessageQueue核心逻辑下移到Native层后,极大地拓展了消息处理的范围,总结一下有以下几点:
    MessageQueue继续支持来自Java层的Message消息,也就是早期的Message加Handler的处理方式。MessageQueue在Native层的代表NativeMessageQueue支持来自Native层的Message,是通过Native的Message和MessageHandler来处理的。
    NativeMessageQueue还处理通过addFd添加的Request。处理逻辑上看,先是Native的Message,然后是Native的Request,最后才是Java的Message。

    相关文章

      网友评论

          本文标题:Android中为什么主线程不会因为Looper.loop()里

          本文链接:https://www.haomeiwen.com/subject/ufcibttx.html