美文网首页
55.在手机上使用PaddleMobile实现图像分类-2

55.在手机上使用PaddleMobile实现图像分类-2

作者: 大勇任卷舒 | 来源:发表于2023-05-10 17:33 被阅读0次
    • 创建Android项目

    1、首先使用Android Studio创建一个普通的Android项目,包名为com.example.paddlemobile1

    2、在main目录下创建l两个assets/paddle_models文件夹,这个文件夹存放PaddleFluid训练好的预测模型。PaddleMobile支持量化模型,使用模型量化可以把模型缩小至原来的四分之一,如果使用量化模型,那加载模型的接口也有修改一下,使用以下的接口加载模型:

    public static native boolean loadQualified(String modelDir);
    

    3、在main目录下创建一个jniLibs文件夹,这个文件夹是存放CPP编译库的,在本项目中就存放上一部分编译的libpaddle-mobile.so

    4、在Android项目的配置文件夹中加上权限声明,因为我们要使用到读取相册和使用相机,所以加上以下的权限声明:

    <uses-permission android:name="android.permission.CAMERA" />
    <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
    <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
    

    5、修改activity_main.xml界面,修改成如下:

    <?xml version="1.0" encoding="utf-8"?>
    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
        xmlns:app="http://schemas.android.com/apk/res-auto"
        xmlns:tools="http://schemas.android.com/tools"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        tools:context=".MainActivity">
    <LinearLayout
        android:id="@+id/btn_ll"
        android:layout_alignParentBottom="true"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:orientation="horizontal">
    
        <Button
            android:id="@+id/use_photo"
            android:layout_weight="1"
            android:layout_width="0dp"
            android:layout_height="wrap_content"
            android:text="相册" />
    
        <Button
            android:id="@+id/start_camera"
            android:layout_weight="1"
            android:layout_width="0dp"
            android:layout_height="wrap_content"
            android:text="拍照" />
    </LinearLayout>
    
    <TextView
        android:layout_above="@id/btn_ll"
        android:id="@+id/result_text"
        android:textSize="16sp"
        android:layout_width="match_parent"
        android:hint="预测结果会在这里显示"
        android:layout_height="100dp" />
    
    <ImageView
        android:layout_alignParentTop="true"
        android:layout_above="@id/result_text"
        android:id="@+id/show_image"
        android:layout_width="match_parent"
        android:layout_height="match_parent" />
    </RelativeLayout>
    

    6、创建一个ImageRecognition.java的Java程序,这个程序的作用就是调用paddle-mobile/src/jni/paddle_mobile_jni.cpp的函数,对应的是里面的函数。目前支持一下几个接口。

    package com.example.paddlemobile1;
    
    public class ImageRecognition {
        // set thread num
        public static native void setThread(int threadCount);
    
    //Load seperated parameters
    public static native boolean load(String modelDir);
    
    // load qualified model
    public static native boolean loadQualified(String modelDir);
    
    // Load combined parameters
    public static native boolean loadCombined(String modelPath, String paramPath);
    
    // load qualified model
    public static native boolean loadCombinedQualified(String modelPath, String paramPath);
    
    // object detection
    public static native float[] predictImage(float[] buf, int[]ddims);
    
    // predict yuv image
    public static native float[] predictYuv(byte[] buf, int imgWidth, int imgHeight, int[] ddims, float[]meanValues);
    
    // clear model
    public static native void clear();
    }
    

    7、然后编写一个PhotoUtil.java的工具类。

    package com.example.paddlemobile1;
    
    import android.app.Activity;
    import android.content.Context;
    import android.content.Intent;
    import android.database.Cursor;
    import android.graphics.Bitmap;
    import android.graphics.BitmapFactory;
    import android.net.Uri;
    import android.os.Build;
    import android.provider.MediaStore;
    import android.support.v4.content.FileProvider;
    import android.util.Log;
    
    import java.io.File;
    import java.io.IOException;
    import java.util.Arrays;
    
    public class PhotoUtil {
    // start camera
    public static Uri start_camera(Activity activity, int requestCode) {
        Uri imageUri;
        // save image in cache path
        File outputImage = new File(activity.getExternalCacheDir(), "out_image.jpg");
        try {
            if (outputImage.exists()) {
                outputImage.delete();
            }
            outputImage.createNewFile();
        } catch (IOException e) {
            e.printStackTrace();
        }
        if (Build.VERSION.SDK_INT >= 24) {
            // compatible with Android 7.0 or over
            imageUri = FileProvider.getUriForFile(activity,
                    "com.example.paddlemobile1", outputImage);
        } else {
            imageUri = Uri.fromFile(outputImage);
        }
        // set system camera Action
        Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
        // set save photo path
        intent.putExtra(MediaStore.EXTRA_OUTPUT, imageUri);
        // set photo quality, min is 0, max is 1
        intent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 0);
        activity.startActivityForResult(intent, requestCode);
        return imageUri;
    }
    
    // get picture in photo
    public static void use_photo(Activity activity, int requestCode){
        Intent intent = new Intent(Intent.ACTION_PICK);
        intent.setType("image/*");
        activity.startActivityForResult(intent, requestCode);
    }
    
    // get photo from Uri
    public static String get_path_from_URI(Context context, Uri uri) {
        String result;
        Cursor cursor = context.getContentResolver().query(uri, null, null, null, null);
        if (cursor == null) {
            result = uri.getPath();
        } else {
            cursor.moveToFirst();
            int idx = cursor.getColumnIndex(MediaStore.Images.ImageColumns.DATA);
            result = cursor.getString(idx);
            cursor.close();
        }
        return result;
    }
    
    // Compress the image to the size of the training image,and change RGB
    public static float[] getScaledMatrix(Bitmap bitmap, int desWidth,
                                   int desHeight) {
        float[] dataBuf = new float[3 * desWidth * desHeight];
        int rIndex;
        int gIndex;
        int bIndex;
        int[] pixels = new int[desWidth * desHeight];
        Bitmap bm = Bitmap.createScaledBitmap(bitmap, desWidth, desHeight, false);
        bm.getPixels(pixels, 0, desWidth, 0, 0, desWidth, desHeight);
        int j = 0;
        int k = 0;
        for (int i = 0; i < pixels.length; i++) {
            int clr = pixels[i];
            j = i / desHeight;
            k = i % desWidth;
            rIndex = j * desWidth + k;
            gIndex = rIndex + desHeight * desWidth;
            bIndex = gIndex + desHeight * desWidth;
            dataBuf[rIndex] = (float) ((clr & 0x00ff0000) >> 16) - 148;
            dataBuf[gIndex] = (float) ((clr & 0x0000ff00) >> 8) - 148;
            dataBuf[bIndex] = (float) ((clr & 0x000000ff)) - 148;
    
        }
        if (bm.isRecycled()) {
            bm.recycle();
        }
        return dataBuf;
    }
    
    // compress picture
    public static Bitmap getScaleBitmap(String filePath) {
        BitmapFactory.Options opt = new BitmapFactory.Options();
        opt.inJustDecodeBounds = true;
        BitmapFactory.decodeFile(filePath, opt);
    
        int bmpWidth = opt.outWidth;
        int bmpHeight = opt.outHeight;
    
        int maxSize = 500;
    
        // compress picture with inSampleSize
        opt.inSampleSize = 1;
        while (true) {
            if (bmpWidth / opt.inSampleSize < maxSize || bmpHeight / opt.inSampleSize < maxSize) {
                break;
            }
            opt.inSampleSize *= 2;
        }
        opt.inJustDecodeBounds = false;
        return BitmapFactory.decodeFile(filePath, opt);
    }
    }
    
    • start_camera()方法是启动相机并返回图片的URI。
    • use_photo()方法是打开相册,获取到的图片URI在回到函数中获取。
    • get_path_from_URI()方法是把图片的URI转换成绝对路径。
    • getScaledMatrix()方法是把图片压缩成跟训练时的大小,并转换成预测需要用的数据格式浮点数组。
    • getScaleBitmap()方法是对图片进行等比例压缩,减少内存的支出。

    8、最后修改MainActivity.java,修改如下:

    package com.example.paddlemobile1;
    
    import android.Manifest;
    import android.annotation.SuppressLint;
    import android.app.Activity;
    import android.content.Context;
    import android.content.Intent;
    import android.content.pm.PackageManager;
    import android.graphics.Bitmap;
    import android.net.Uri;
    import android.os.Bundle;
    import android.os.Environment;
    import android.support.annotation.NonNull;
    import android.support.annotation.Nullable;
    import android.support.v4.app.ActivityCompat;
    import android.support.v4.content.ContextCompat;
    import android.support.v7.app.AppCompatActivity;
    import android.util.Log;
    import android.view.View;
    import android.widget.Button;
    import android.widget.ImageView;
    import android.widget.TextView;
    import android.widget.Toast;
    
    import com.bumptech.glide.Glide;
    import com.bumptech.glide.load.engine.DiskCacheStrategy;
    import com.bumptech.glide.request.RequestOptions;
    
    import java.io.File;
    import java.io.FileOutputStream;
    import java.io.InputStream;
    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.List;
    
    public class MainActivity extends AppCompatActivity {
        private static final String TAG = MainActivity.class.getName();
        private static final int USE_PHOTO = 1001;
        private static final int START_CAMERA = 1002;
        private Uri image_uri;
        private ImageView show_image;
        private TextView result_text;
        private String assets_path = "paddle_models";
        private boolean load_result = false;
        private int[] ddims = {1, 3, 224, 224};
    private static final String[] PADDLE_MODEL = {
            "lenet",
            "alexnet",
            "vgg16",
            "resnet",
            "googlenet",
            "mobilenet_v1",
            "mobilenet_v2",
            "inception_v1",
            "inception_v2",
            "squeezenet"
    };
    
    // load paddle-mobile api
    static {
        try {
            System.loadLibrary("paddle-mobile");
    
        } catch (SecurityException e) {
            e.printStackTrace();
    
        } catch (UnsatisfiedLinkError e) {
            e.printStackTrace();
    
        } catch (NullPointerException e) {
            e.printStackTrace();
    
        }
    
    }
    
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
    
        init();
    }
    
    // initialize view
    private void init() {
        request_permissions();
        show_image = (ImageView) findViewById(R.id.show_image);
        result_text = (TextView) findViewById(R.id.result_text);
        Button use_photo = (Button) findViewById(R.id.use_photo);
        Button start_photo = (Button) findViewById(R.id.start_camera);
    
        // use photo click
        use_photo.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View view) {
                PhotoUtil.use_photo(MainActivity.this, USE_PHOTO);
                //                load_model();
                }
            });
    
        // start camera click
        start_photo.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View view) {
                image_uri = PhotoUtil.start_camera(MainActivity.this, START_CAMERA);
            }
        });
    
        // copy file from assets to sdcard
        String sdcard_path = Environment.getExternalStorageDirectory()
                + File.separator + assets_path;
        copy_file_from_asset(this, assets_path, sdcard_path);
    
        // load model
        load_model();
    }
    
    // load infer model
    private void load_model() {
        String model_path = Environment.getExternalStorageDirectory()
                + File.separator + assets_path + File.separator + PADDLE_MODEL[4];
        Log.d(TAG, model_path);
        load_result = ImageRecognition.load(model_path);
        if (load_result) {
            Log.d(TAG, "model load success");
        } else {
            Log.d(TAG, "model load fail");
        }
    }
    
    // clear infer model
    private void clear_model() {
        ImageRecognition.clear();
        Log.d(TAG, "model is clear");
    }
    
    // copy file from asset to sdcard
    public void copy_file_from_asset(Context context, String oldPath, String newPath) {
        try {
            String[] fileNames = context.getAssets().list(oldPath);
            if (fileNames.length > 0) {
                // directory
                File file = new File(newPath);
                if (!file.exists()) {
                    file.mkdirs();
                }
                // copy recursivelyC
                for (String fileName : fileNames) {
                    copy_file_from_asset(context, oldPath + "/" + fileName, newPath + "/" + fileName);
                }
                Log.d(TAG, "copy files finish");
            } else {
                // file
                File file = new File(newPath);
                // if file exists will never copy
                if (file.exists()) {
                    return;
                }
    
                // copy file to new path
                InputStream is = context.getAssets().open(oldPath);
                FileOutputStream fos = new FileOutputStream(file);
                byte[] buffer = new byte[1024];
                int byteCount;
                while ((byteCount = is.read(buffer)) != -1) {
                    fos.write(buffer, 0, byteCount);
                }
                fos.flush();
                is.close();
                fos.close();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    @Override
    protected void onActivityResult(int requestCode, int resultCode, @Nullable Intent data) {
        String image_path;
        RequestOptions options = new RequestOptions().skipMemoryCache(true).diskCacheStrategy(DiskCacheStrategy.NONE);
        if (resultCode == Activity.RESULT_OK) {
            switch (requestCode) {
                case USE_PHOTO:
                    if (data == null) {
                        Log.w(TAG, "user photo data is null");
                        return;
                    }
                    image_uri = data.getData();
                    Glide.with(MainActivity.this).load(image_uri).apply(options).into(show_image);
                    // get image path from uri
                    image_path = PhotoUtil.get_path_from_URI(MainActivity.this, image_uri);
                    // show result
                    result_text.setText(image_path);
                    // predict image
                    predict_image(PhotoUtil.get_path_from_URI(MainActivity.this, image_uri));
                    break;
                case START_CAMERA:
                    // show photo
                    Glide.with(MainActivity.this).load(image_uri).apply(options).into(show_image);
                    // get image path from uri
                    image_path = PhotoUtil.get_path_from_URI(MainActivity.this, image_uri);
                    // show result
                    result_text.setText(image_path);
                    // predict image
                    predict_image(PhotoUtil.get_path_from_URI(MainActivity.this, image_uri));
                    break;
            }
        }
    }
    
    @SuppressLint("SetTextI18n")
    private void predict_image(String image_path) {
        // picture to float array
        Bitmap bmp = PhotoUtil.getScaleBitmap(image_path);
        float[] inputData = PhotoUtil.getScaledMatrix(bmp, ddims[2], ddims[3]);
        try {
            long start = System.currentTimeMillis();
            // get predict result
            float[] result = ImageRecognition.predictImage(inputData, ddims);
            Log.d(TAG, "origin predict result:" + Arrays.toString(result));
            long end = System.currentTimeMillis();
            long time = end - start;
            Log.d("result length", String.valueOf(result.length));
            // show predict result and time
            int r = get_max_result(result);
            String show_text = "result:" + r + "\nprobability:" + result[r] + "\ntime:" + time + "ms";
            result_text.setText(show_text);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    private int get_max_result(float[] result) {
        float probability = result[0];
        int r = 0;
        for (int i = 0; i < result.length; i++) {
            if (probability < result[i]) {
                probability = result[i];
                r = i;
            }
        }
        return r;
    }
    
    // request permissions
    private void request_permissions() {
    
        List<String> permissionList = new ArrayList<>();
        if (ContextCompat.checkSelfPermission(this, Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) {
            permissionList.add(Manifest.permission.CAMERA);
        }
    
        if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_EXTERNAL_STORAGE) != PackageManager.PERMISSION_GRANTED) {
            permissionList.add(Manifest.permission.WRITE_EXTERNAL_STORAGE);
        }
    
        if (ContextCompat.checkSelfPermission(this, Manifest.permission.READ_EXTERNAL_STORAGE) != PackageManager.PERMISSION_GRANTED) {
            permissionList.add(Manifest.permission.READ_EXTERNAL_STORAGE);
        }
    
        // if list is not empty will request permissions
        if (!permissionList.isEmpty()) {
            ActivityCompat.requestPermissions(this, permissionList.toArray(new String[permissionList.size()]), 1);
        }
    }
    
    @Override
    public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) {
        super.onRequestPermissionsResult(requestCode, permissions, grantResults);
        switch (requestCode) {
            case 1:
                if (grantResults.length > 0) {
                    for (int i = 0; i < grantResults.length; i++) {
    
                        int grantResult = grantResults[i];
                        if (grantResult == PackageManager.PERMISSION_DENIED) {
                            String s = permissions[i];
                            Toast.makeText(this, s + " permission was denied", Toast.LENGTH_SHORT).show();
                        }
                    }
                }
                break;
        }
    }
    
    @Override
    protected void onDestroy() {
        // clear model before destroy app
        clear_model();
        super.onDestroy();
    }
    }
    
    • load_model()方法是加载预测模型的。
    • clear_model()方法是清空预测模型的。
    • copy_file_from_asset()方法是把预测模型复制到内存卡上。
    • predict_image()方法是预测图片的。
    • get_max_result()方法是获取概率最大的预测结果。
    • request_permissions()方法是动态请求权限的。

    因为使用到图像加载框架Glide,所以要在build.gradle加入以下的引用。

    implementation 'com.github.bumptech.glide:glide:4.3.1'
    

    8、最后运行项目,选择图片预测就会得到结果。
    大数据视频推荐:
    网易云课堂
    CSDN
    人工智能算法竞赛实战
    AIops智能运维机器学习算法实战
    ELK7 stack开发运维实战
    PySpark机器学习从入门到精通
    AIOps智能运维实战
    腾讯课堂
    大数据语音推荐:
    ELK7 stack开发运维
    企业级大数据技术应用
    大数据机器学习案例之推荐系统
    自然语言处理
    大数据基础
    人工智能:深度学习入门到精通

    相关文章

      网友评论

          本文标题:55.在手机上使用PaddleMobile实现图像分类-2

          本文链接:https://www.haomeiwen.com/subject/uidjsdtx.html