美文网首页
RDD常用算子

RDD常用算子

作者: ALTHE | 来源:发表于2016-05-22 10:01 被阅读1177次
  1. 创建RDD
    代码:
    def sparkContext(name:String)=
    {
    val conf = new SparkConf().setAppName(name).setMaster("local")
    val sc = new SparkContext(conf)
    sc
    }
  2. Map
    作用:适用于任何集合,且对其作用的集合中的每一个元素循环遍历,并调用其作为参数的函数对每一个遍历的元素进行具体化处理。
    代码:
    def mapTransformation(sc:SparkContext): Unit ={
    val nums = sc.parallelize(1 to 10)//根据集合创建RDD
    val mapped = nums.map(item=> 2 * item)
    mapped.collect.foreach(print)
    }
    结果:2 4 6 8 10 12 14 16 18 20
  1. Filter
    作用:遍历集合中的所有元素,将每个元素作为参数放入函数中进行判断,将判断结果为真的元素筛选出来。
    代码:
    def filterTransformation(sc:SparkContext): Unit ={
    val nums = sc.parallelize(1 to 20)//根据集合创建RDD
    val filtered = nums.filter(item => item % 2 == 0)
    filtered.collect.foreach(println)
    }
    结果:2 4 6 8 10 12 14 16 18 20

  2. Flatmap
    作用:通过传入的作为参数的函数来作用与RDD的每个字符串进行单词切分,然后把切分后的结果合并成一个大的集合
    代码:
    def flatmapTransformation(sc:SparkContext): Unit ={
    val bigData = Array("scala","spark","java_Hadoop","java_tachyon")
    val bigDataString =sc.parallelize(bigData)
    val words= bigDataString.flatMap(line=>line.split(" "))
    words.collect.foreach(print)
    }
    结果:scala spark java_Hadoop java_tachyon

  3. groupByKey
    作用:将传入的tuple数组生成为RDD,通过groupByKey方法将RDD通过key进行分组汇总,并生成一个新的RDD
    代码:
    def groupByKeyTransformation(sc:SparkContext): Unit ={
    val data = Array(Tuple2(100,"Spark"),Tuple2(100,"Tachyon"),Tuple2(90,"Hadoop"),Tuple2(80,"Kafka"),Tuple2(70,"Scala"))
    val dataRDD = sc.parallelize(data)
    val group = dataRDD.groupByKey()
    group.collect.foreach(pair=>println(pair._1+":"+pair._2))
    }
    结果:
    100:CompactBuffer(Spark, Tachyon)
    90:CompactBuffer(Hadoop)
    80:CompactBuffer(Kafka)
    70:CompactBuffer(Scala)

  4. reduceByKey
    作用:对key相同的元素进行value值得相加。
    代码:
    def reduceByKeyTransformation(sc:SparkContext): Unit ={
    val lines =sc.textFile("C://Users//feng//IdeaProjects//WordCount//src//SparkText.txt",1)
    val reduce= lines.map(line=>(line,1)).reduceByKey(+)
    reduce.collect.foreach(pair=>println(pair._1+":"+pair._2))
    }
    文件内容:
    hadoop hadoop hadoop
    spark Flink spark
    scala scala object
    object spark scala
    spark spark
    hadoop
    hadoop

结果:
hadoop hadoop hadoop:1
spark Flink spark:1
scala scala object:1
object spark scala:1
spark spark:1
hadoop:2

  1. Join
    作用:根据相同key,把不同的RDD合并为一个RDD
    代码:
    def joinTransformation(sc:SparkContext): Unit ={
    //大数据中最重要的算子
    val studentNames=Array(
    Tuple2(1,"Spark"),
    Tuple2(2,"Tachyon"),
    Tuple2(3,"Hadoop")
    )
    val studentScore=Array(
    Tuple2(1,100),
    Tuple2(2,95),
    Tuple2(3,65),
    Tuple2(2,95),
    Tuple2(3,65)
    )
    val names = sc.parallelize(studentNames)
    val scores = sc.parallelize(studentScore)
    val studentNameAndScore=names.join(scores)
    studentNameAndScore.collect.foreach(println)
    }
    结果:
    (1,(Spark, 100))
    (3,(Hadoop, 65))
    (3,(Hadoop, 65))
    (2,(Tachyon,95))
    (2,(Tachyon,95))

  2. cogroup
    作用:协同分组,首先将两个RDD的内容进行join,在此基础上,以ID为key的情况下将改ID内容的所有分数聚合到一起。
    代码:
    def cogroupTransformation(sc:SparkContext): Unit ={
    val nameList = Array(
    Tuple2(1,"Spark"),
    Tuple2(2,"Scala"),
    Tuple2(3,"Hadoop")
    )
    val scoreList = Array(
    Tuple2(1,100),
    Tuple2(2,90),
    Tuple2(3,87),
    Tuple2(1,80),
    Tuple2(2,90),
    Tuple2(2,60)
    )
    val names = sc.parallelize(nameList)
    val scores =sc.parallelize(scoreList)
    val nameScores= names.cogroup(scores)
    nameScores.collect.foreach(println)
    }
    结果:
    (1,(CompactBuffer(Spark),CompactBuffer(100, 80)))
    (3,(CompactBuffer(Hadoop),CompactBuffer(87)))
    (2,(CompactBuffer(Scala),CompactBuffer(90, 90, 60)))

相关文章

网友评论

      本文标题:RDD常用算子

      本文链接:https://www.haomeiwen.com/subject/uiporttx.html