LRU原理
在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页。假设内存按照栈的方式来描述访问时间,在上面的,是最近访问的,在下面的是,最远时间访问的,LRU就是这样工作的。
image但是如果让我们自己设计一个基于 LRU 的缓存,这样设计可能问题很多,这段内存按照访问时间进行了排序,会有大量的内存拷贝操作,所以性能肯定是不能接受的。
那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。
基于 HashMap 和 双向链表实现 LRU 的
整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。
LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 head 代表双向链表的表头,tail 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。
下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:
save("key1", 7)
save("key2", 0)
save("key3", 1)
save("key4", 2)
get("key2")
save("key5", 3)
get("key2")
save("key6", 4)
相应的 LRU 双向链表部分变化如下:
s = save, g = get
总结一下核心操作的步骤:
save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。
get(key),通过 HashMap 找到 LRU 链表节点,因为根据LRU 原理,这个节点是最新访问的,所以要把节点插入到队头,然后返回缓存的值。
完整基于 Java 的代码参考如下
classDLinkedNode{Stringkey;intvalue;DLinkedNodepre;DLinkedNodepost;}
LRU Cache
publicclassLRUCache{privateHashtablecache=newHashtable();privateintcount;privateintcapacity;privateDLinkedNodehead,tail;publicLRUCache(intcapacity){this.count=0;this.capacity=capacity;head=newDLinkedNode();head.pre=null;tail=newDLinkedNode();tail.post=null;head.post=tail;tail.pre=head;}publicintget(Stringkey){DLinkedNodenode=cache.get(key);if(node==null){return-1;// should raise exception here.}// move the accessed node to the head;this.moveToHead(node);returnnode.value;}publicvoidset(Stringkey,intvalue){DLinkedNodenode=cache.get(key);if(node==null){DLinkedNodenewNode=newDLinkedNode();newNode.key=key;newNode.value=value;this.cache.put(key,newNode);this.addNode(newNode);++count;if(count>capacity){// pop the tailDLinkedNodetail=this.popTail();this.cache.remove(tail.key);--count;}}else{// update the value.node.value=value;this.moveToHead(node);}}/*** Always add the new node right after head;*/privatevoidaddNode(DLinkedNodenode){node.pre=head;node.post=head.post;head.post.pre=node;head.post=node;}/*** Remove an existing node from the linked list.*/privatevoidremoveNode(DLinkedNodenode){DLinkedNodepre=node.pre;DLinkedNodepost=node.post;pre.post=post;post.pre=pre;}/*** Move certain node in between to the head.*/privatevoidmoveToHead(DLinkedNodenode){this.removeNode(node);this.addNode(node);}// pop the current tail.privateDLinkedNodepopTail(){DLinkedNoderes=tail.pre;this.removeNode(res);returnres;}}
那么问题的后半部分,是 Redis 如何实现,这个问题这么问肯定是有坑的,那就是redis肯定不是这样实现的。
Redis的LRU实现
如果按照HashMap和双向链表实现,需要额外的存储存放 next 和 prev 指针,牺牲比较大的存储空间,显然是不划算的。所以Redis采用了一个近似的做法,就是随机取出若干个key,然后按照访问时间排序后,淘汰掉最不经常使用的,具体分析如下:
为了支持LRU,Redis 2.8.19中使用了一个全局的LRU时钟,server.lruclock,定义如下,
#define REDIS_LRU_BITS 24unsignedlruclock:REDIS_LRU_BITS;/* Clock for LRU eviction */
默认的LRU时钟的分辨率是1秒,可以通过改变REDIS_LRU_CLOCK_RESOLUTION宏的值来改变,Redis会在serverCron()中调用updateLRUClock定期的更新LRU时钟,更新的频率和hz参数有关,默认为100ms一次,如下,
#define REDIS_LRU_CLOCK_MAX ((1lru */#define REDIS_LRU_CLOCK_RESOLUTION 1/* LRU clock resolution in seconds */voidupdateLRUClock(void){server.lruclock=(server.unixtime/REDIS_LRU_CLOCK_RESOLUTION)&REDIS_LRU_CLOCK_MAX;}
server.unixtime是系统当前的unix时间戳,当 lruclock 的值超出REDIS_LRU_CLOCK_MAX时,会从头开始计算,所以在计算一个key的最长没有访问时间时,可能key本身保存的lru访问时间会比当前的lrulock还要大,这个时候需要计算额外时间,如下,
/* Given an object returns the min number of seconds the object was never* requested, using an approximated LRU algorithm. */unsignedlongestimateObjectIdleTime(robj*o){if(server.lruclock>=o->lru){return(server.lruclock-o->lru)*REDIS_LRU_CLOCK_RESOLUTION;}else{return((REDIS_LRU_CLOCK_MAX-o->lru)+server.lruclock)*REDIS_LRU_CLOCK_RESOLUTION;}}
Redis支持和LRU相关淘汰策略包括,
volatile-lru设置了过期时间的key参与近似的lru淘汰策略
allkeys-lru所有的key均参与近似的lru淘汰策略
当进行LRU淘汰时,Redis按如下方式进行的,
....../* volatile-lru and allkeys-lru policy */elseif(server.maxmemory_policy==REDIS_MAXMEMORY_ALLKEYS_LRU||server.maxmemory_policy==REDIS_MAXMEMORY_VOLATILE_LRU){for(k=0;kexpires. */if(server.maxmemory_policy==REDIS_MAXMEMORY_VOLATILE_LRU)de=dictFind(db->dict,thiskey);o=dictGetVal(de);thisval=estimateObjectIdleTime(o);/* Higher idle time is better candidate for deletion */if(bestkey==NULL||thisval>bestval){bestkey=thiskey;bestval=thisval;}}}......
Redis会基于server.maxmemory_samples配置选取固定数目的key,然后比较它们的lru访问时间,然后淘汰最近最久没有访问的key,maxmemory_samples的值越大,Redis的近似LRU算法就越接近于严格LRU算法,但是相应消耗也变高,对性能有一定影响,样本值默认为5。
总结
看来,虽然一个简单的概念,在工业界的产品中,为了追求空间的利用率,也会采用权衡的实现方案。
网友评论