前言
众所周知,Handler在Andorid中无处不在。Handler是Android SDK来处理异步消息的核心类。
首先我们介绍Handler机制中的四大核心类。Message,Looper,MessageQueue,Handler。
Message
消息对象,用来封装所需要发送的内容,可以是object,也可以是Runnable callback。
Looper
轮询器,Looper的作用是处理进程间的消息的,以便实现进程间通讯,是Handler机制的一部分,用来轮训MessageQueue中的Message,实现接收Message。
MessageQueue
消息队列,用来存储消息。
Handler
Handler是Android SDK来处理异步消息的核心类。
流程分析
下面我们以主线程中的Handler流程为例:
在ActivityThread的main方法中,调用了 Looper.prepareMainLooper()来初始化Looper。得到主线程的sMainLooper。这里创建了一个Looper对象,并且在Looper的构造方法中创建了一个MessageQueue队列,然后通过ThreadLocal将Looper对象和当前线程即主线程绑定。
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
然后用户在创建Handler时,得到的MessageQueue队列就是前面Looper对象中创建的,进行消息封装后,调用sendMessage方法,最终都是调用的enqueueMessage()来进行消息的压入。
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这里主要是根据when来判断消息放入队列的顺序,消息的存储使用了链表结构,此处用了一个for循环将放入队列的消息对象放在了链表末尾,从而做到了先进先出。
在调用Looper.loop()方法后,进行了消息的取出,主要是调用了消息队列里面的next()方法进行取出。
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
在取出消息后,调用了msg.target.dispatchMessage(msg)方法进行消息分发,而target实际上就是存入消息时的Handler。
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
在Handler中,dispatchMessage方法对消息进行了分发,而msg.callback实际上就是我们调用handler.postDelayed()方法时传入的runnable。当调用sendMessage()方法是callback为空,此时就调用了Callback.handleMessage方法,如果这个不存在,就调用本身重写的方法。
这里也就说明了创建一个Handler对象时两种不同写法的区别,一种是实现Callback接口,另一种则是重写了类中的方法。
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
至此Handler的流程结束。
下面我们分析下Handler使用中的几个问题。
- Handler使用中内存泄漏的问题?
在子线程中耗时操作后调用handler,此时Activity已经销毁,线程已经在跑,此时再进行Handler操作就会发生内存泄漏。发现销毁Activity后实现跳转页面等操作依旧会成功。
解决办法,在Activity销毁的时候将handler置空,然后发送消息的时候判断handler是否为空,为空则不发送。 - 为什么不能在子线程中创建handler?
子线程中没有创建looper对象,需要调用Looper.prepare进行初始化操作。这里顺便说明主线程中在ActivityThread的main方法中已经做了初始化,所以主线程可以直接使用。 - MessageQueue 队列中为空的时候,为什么不会阻塞,用了什么机制?
在MessageQueue.next()方法中,当没有消息或者消息执行时间没到的情况下,会调用nativePollOnce休眠线程,当MessageQueue中有消息时,调用nativeWake(mPtr) 唤醒线程,
使用了Linux的pipe/epoll机制。
epoll是Linux内核为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量[并发连接中只有少量活跃的情况下的系统CPU利用率。 - 一个线程能有几个Handler和Looper,如何保证?
一个线程能有多个Handler,但只能拥有一个Looper,是通过ThreadLocal保证的。 - MessageQueue是否保证线程安全?
通过synchronized保证线程安全,所以并不保证准确性。
网友评论