美文网首页
什么是集总参数和分布参数

什么是集总参数和分布参数

作者: AWhaleFall | 来源:发表于2019-03-27 17:03 被阅读0次

    在低频电路中,元器件的尺寸相对于信号的波长而言可以忽略(通常小于波长的1/10),这种情况下的电路被称为节点(Lump)电路,此时可以采用常规的电压、电流定律来进行电路计算。

    但是在高频/微波电路中,由于波长较短,组件的尺寸就无法再被视为一个节点,某一瞬间组件上所分布的电压、电流会不一致。因此基本的电路照论不再适用,而必须采用电磁场理论中的反射及传输模式来分析电路。元器件内部电磁波的进行波与反射波的干涉使电压和电流失去了一致性,电压电流比为稳定状态的固有特性也不再适用,取而代之的是“分布参数”的特性阻抗观念,此时的电路以电磁波传送与反射为基础要素,即反射系数、衰减系数、传送的延迟时间。

    低频时候,一般采用集总参数电路

    高频时候,适宜采用分布参数电路

    组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。

    参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。

    一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用 l表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式 λ>>l 成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路 ,因50赫芝的电流 、电压其波长虽为 6000 千米,但线路长度达几百甚至几千千米,已可与波长相比。通信系统中发射天线等的实际尺寸虽不太长,但发射信号频率高、波长短 ,也应作分布参数电路处理。

    研究分布参数电路时,常以具有两条平行导线、而且参数沿线均匀分布的传输线为对象。这种传输线称为均匀传输线(或均匀长线)。作这样的选择是因为实际应用的传输线可以等效转换成具有两条平行导线形式的传输线,而且这种均匀的传输线容易分析。

    传输线是传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R0 代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和漏电导。这些参数是由导线所用的材料、截面的几何形状与尺寸、导线间的距离,以及导线周围介质决定的。在高频和低频高电压下它们都有近似的计算公式。 

    状态变化不能只用有限个参数而必须用场(一维或多维空间变量的函数)来描述的系统。在实际问题中,参数的分布性质是普遍存在的。在很多情况下可以部分甚至全部地忽略这种分布性质,以便简化对问题的研究。例如,对于一个有质量分布的弹性飞行器,在研究它的扭转运动时,必须考察其内部各点的运动,把它当作分布参数系统。但在研究它的运动轨线时,就不必逐点考虑其内部运动,而把质量集中到质心来分析,即把它当作集中参数系统。可以用有限个变量描述的系统,称为集中参数系统或集总参数系统。分布参数系统的典型实例有:电磁场、引力场、温度场等物理场,弹性梁型的运动体,大型加热炉,水轮机和汽轮机,化学反应器中的物质分布状态,长导线中的电压和电流等控制对象,环境系统(如污染物在一区域内的分布),生态系统(如物种的空间分布),社会系统(如人口密度分布)等。此外,若运动过程包含因在某种场内传递而造成的时滞,则这种时滞系统也属于分布参数系统。分布参数系统广泛应用于热工、化工、导弹、航天、航空、核裂、聚变等工程系统,以及生态系统、环境系统、社会系统等。

    相关文章

      网友评论

          本文标题:什么是集总参数和分布参数

          本文链接:https://www.haomeiwen.com/subject/ukctbqtx.html