美文网首页
Redis 源码研究之数据淘汰机制

Redis 源码研究之数据淘汰机制

作者: wenmingxing | 来源:发表于2018-05-06 23:10 被阅读167次

    本文主要介绍Redis的几种数据淘汰机制。

    I、上帝视角

    由于Redis是内存型数据库,其允许用户设置最大使用内存大小为maxmemory,在内存有限的情况下,为减少内存紧张的情况,当内存数据集大小上升至一定值时,就会实施数据淘汰机制。

    Redis提供了以下几种数据淘汰策略:
    1、 volatile-lru:从设置过期的数据集中淘汰最少使用的数据;
    2、volatile-ttl:从设置过期的数据集中淘汰即将过期的数据(离过期时间最近);
    3、volatile-random:从设置过期的数据集中随机选取数据淘汰;
    4、allkeys-lru:从所有 数据集中选取使用最少的数据;
    5、allkeys-random:从所有数据集中任意选取数据淘汰;
    6、no-envicition:不进行淘汰;

    II、LRU数据淘汰

    1、redisServer中保存了lru计数器server.lrulock,会定时更新,这是根据server.unixtime计算出来的:

    // redisServer 保存了lru 计数器
    /*src/redis.h/redisServer*/
    struct redisServer {
    ...
    unsigned lruclock:22; /* Clock incrementing every minute, for LRU */
    ...
    };  
    

    2、LRU数据淘汰机制使这样的:从数据集中随机挑选几个键值对,取出其中lru最大的键值对淘汰。

    III、TTL数据淘汰

    1、TTL淘汰机制使从过期时间redisDB.expires表中随机挑选几个键值对,取出其中ttl最大的键值对淘汰。

    IV、淘汰发生

    1、Redis服务器没执行一个命令,都会检测内存,判断是否需要进行数据淘汰:

    // 执行命令
    /*src/redis.cprocessCommand*/
    int processCommand(redisClient *c) {
            ......
            // 内存超额
            /* Handle the maxmemory directive.
            **
            First we try to free some memory if possible (if there are volatile
            * keys in the dataset). If there are not the only thing we can do
            * is returning an error. */
            if (server.maxmemory) {
                    int retval = freeMemoryIfNeeded();
            if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) {
                    flagTransaction(c);
                    addReply(c, shared.oomerr);
                    return REDIS_OK;
            }
        }
        ......
    }  
    

    2、这其中主要调用了freeMemoryIfNeeded函数,它完成了完整的数据淘汰机制:

    int freeMemoryIfNeeded(void) {
        size_t mem_used, mem_tofree, mem_freed;
        int slaves = listLength(server.slaves);
    
        /* Remove the size of slaves output buffers and AOF buffer from the
         * count of used memory. */
        // 计算出 Redis 目前占用的内存总数,但有两个方面的内存不会计算在内:
        // 1)从服务器的输出缓冲区的内存
        // 2)AOF 缓冲区的内存
        mem_used = zmalloc_used_memory();
        if (slaves) {
            listIter li;
            listNode *ln;
    
            listRewind(server.slaves,&li);
            while((ln = listNext(&li))) {
                redisClient *slave = listNodeValue(ln);
                unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
                if (obuf_bytes > mem_used)
                    mem_used = 0;
                else
                    mem_used -= obuf_bytes;
            }
        }
        if (server.aof_state != REDIS_AOF_OFF) {
            mem_used -= sdslen(server.aof_buf);
            mem_used -= aofRewriteBufferSize();
        }
    
        /* Check if we are over the memory limit. */
        // 如果目前使用的内存大小比设置的 maxmemory 要小,那么无须执行进一步操作
        if (mem_used <= server.maxmemory) return REDIS_OK;
    
        // 如果占用内存比 maxmemory 要大,但是 maxmemory 策略为不淘汰,那么直接返回
        if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)
            return REDIS_ERR; /* We need to free memory, but policy forbids. */
    
        /* Compute how much memory we need to free. */
        // 计算需要释放多少字节的内存
        mem_tofree = mem_used - server.maxmemory;
    
        // 初始化已释放内存的字节数为 0
        mem_freed = 0;
    
        // 根据 maxmemory 策略,
        // 遍历字典,释放内存并记录被释放内存的字节数
        while (mem_freed < mem_tofree) {
            int j, k, keys_freed = 0;
    
            // 遍历所有字典
            for (j = 0; j < server.dbnum; j++) {
                long bestval = 0; /* just to prevent warning */
                sds bestkey = NULL;
                dictEntry *de;
                redisDb *db = server.db+j;
                dict *dict;
    
                if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                    server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM)
                {
                    // 如果策略是 allkeys-lru 或者 allkeys-random 
                    // 那么淘汰的目标为所有数据库键
                    dict = server.db[j].dict;
                } else {
                    // 如果策略是 volatile-lru 、 volatile-random 或者 volatile-ttl 
                    // 那么淘汰的目标为带过期时间的数据库键
                    dict = server.db[j].expires;
                }
    
                // 跳过空字典
                if (dictSize(dict) == 0) continue;
    
                /* volatile-random and allkeys-random policy */
                // 如果使用的是随机策略,那么从目标字典中随机选出键
                if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||
                    server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)
                {
                    de = dictGetRandomKey(dict);
                    bestkey = dictGetKey(de);
                }
    
                /* volatile-lru and allkeys-lru policy */
                // 如果使用的是 LRU 策略,
                // 那么从一集 sample 键中选出 IDLE 时间最长的那个键
                else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                    server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
                {
                    struct evictionPoolEntry *pool = db->eviction_pool;
    
                    while(bestkey == NULL) {
                        //随机取一集键值对
                        evictionPoolPopulate(dict, db->dict, db->eviction_pool);
                        /* Go backward from best to worst element to evict. */
                        for (k = REDIS_EVICTION_POOL_SIZE-1; k >= 0; k--) {
                            if (pool[k].key == NULL) continue;
                            de = dictFind(dict,pool[k].key);
    
                            /* Remove the entry from the pool. */
                            sdsfree(pool[k].key);
                            /* Shift all elements on its right to left. */
                            memmove(pool+k,pool+k+1,
                                sizeof(pool[0])*(REDIS_EVICTION_POOL_SIZE-k-1));
                            /* Clear the element on the right which is empty
                             * since we shifted one position to the left.  */
                            pool[REDIS_EVICTION_POOL_SIZE-1].key = NULL;
                            pool[REDIS_EVICTION_POOL_SIZE-1].idle = 0;
    
                            /* If the key exists, is our pick. Otherwise it is
                             * a ghost and we need to try the next element. */
                            if (de) {
                                bestkey = dictGetKey(de);
                                break;
                            } else {
                                /* Ghost... */
                                continue;
                            }
                        }
                    }
                }
    
                /* volatile-ttl */
                // 策略为 volatile-ttl ,从一集 sample 键中选出过期时间距离当前时间最接近的键
                else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {
                    for (k = 0; k < server.maxmemory_samples; k++) {
                        sds thiskey;
                        long thisval;
    
                        de = dictGetRandomKey(dict);
                        thiskey = dictGetKey(de);
                        thisval = (long) dictGetVal(de);
    
                        /* Expire sooner (minor expire unix timestamp) is better
                         * candidate for deletion */
                        if (bestkey == NULL || thisval < bestval) {
                            bestkey = thiskey;
                            bestval = thisval;
                        }
                    }
                }
    
                /* Finally remove the selected key. */
                // 删除被选中的键
                if (bestkey) {
                    long long delta;
    
                    robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
                    propagateExpire(db,keyobj);
                    /* We compute the amount of memory freed by dbDelete() alone.
                     * It is possible that actually the memory needed to propagate
                     * the DEL in AOF and replication link is greater than the one
                     * we are freeing removing the key, but we can't account for
                     * that otherwise we would never exit the loop.
                     *
                     * AOF and Output buffer memory will be freed eventually so
                     * we only care about memory used by the key space. */
                    // 计算删除键所释放的内存数量
                    delta = (long long) zmalloc_used_memory();
                    dbDelete(db,keyobj);
                    delta -= (long long) zmalloc_used_memory();
                    mem_freed += delta;
                    
                    // 对淘汰键的计数器增一
                    server.stat_evictedkeys++;
    
                    notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, "evicted",
                        keyobj, db->id);
                    decrRefCount(keyobj);
                    keys_freed++;
    
                    /* When the memory to free starts to be big enough, we may
                     * start spending so much time here that is impossible to
                     * deliver data to the slaves fast enough, so we force the
                     * transmission here inside the loop. */
                    if (slaves) flushSlavesOutputBuffers();
                }
            }
    
            if (!keys_freed) return REDIS_ERR; /* nothing to free... */
        }
    
        return REDIS_OK;
    }
    

    【参考】
    [1] 《Redis设计与实现》
    [2] 《Redis源码日志》

    相关文章

      网友评论

          本文标题:Redis 源码研究之数据淘汰机制

          本文链接:https://www.haomeiwen.com/subject/uklilftx.html