有的时候我们会觉得说了解一个系统或框架的前世今生似乎没什么必要,直接开始学具体的技术不是更快更好吗?
其实,不论是学习哪种技术,直接扎到具体的细节中,亦或是从一个很小的点开始学习,你很快就会感到厌烦。为什么呢?因为你虽然快速地搞定了某个技术细节,但无法建立全局的认知观,这会导致你只是在单个的点上有所进展,却法将其串联成一条线进而扩展成一个面,从而实现系统地学习。
比如你学习大数据,你先了解大数据的发展历史,那么面对这多技术就不会混乱了,还能知道它的应用环境和经验。正面的例子:
大数据技术,其实起源于 Google 在 2004 年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统 GFS、大数据分布式计算框架 MapReduce 和 NoSQL 数据库系统 BigTable。一个文件系统、一个计算框架、一个数据库系统。
当时的天才程序员,也是 Lucene 开源项目的创始人 Doug Cutting 正在开发开源搜索引擎 Nutch,阅读了 Google 的论文后,他非常兴奋,紧接着就根据论文原理初步实现了类似 GFS 和 MapReduce 的功能。
两年后的 2006 年,Doug Cutting 将这些大数据相关的功能从 Nutch 中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术,这就是后来赫赫有名的 Hadoop,主要包括 Hadoop 分布式文件系统 HDFS 和大数据计算引擎 MapReduce。
2008 年,Hadoop 正式成为 Apache 的顶级项目,后来 Doug Cutting 本人也成为了 Apache 基金会的主席。自此,Hadoop 作为软件开发领域的一颗明星冉冉升起。同年,专门运营 Hadoop 的商业公司 Cloudera 成立,Hadoop 得到进一步的商业支持。
这个时候,Yahoo 的一些人觉得用 MapReduce 进行大数据编程太麻烦了,于是便开发了 Pig。Pig 是一种脚本语言,使用类 SQL 的语法,开发者可以用 Pig 脚本描述要对大数据集上进行的操作,Pig 经过编译后会生成 MapReduce 程序,然后在 Hadoop 上运行。
编写 Pig 脚本虽然比直接 MapReduce 编程容易,但是依然需要学习新的脚本语法。于是 Facebook 又发布了 Hive。Hive 支持使用 SQL 语法来进行大数据计算,比如说你可以写个 Select 语句进行数据查询,然后 Hive 会把 SQL 语句转化成 MapReduce 的计算程序。
这样,熟悉数据库的数据分析师和工程师便可以无门槛地使用大数据进行数据分析和处理了。Hive 出现后极大程度地降低了 Hadoop 的使用难度,迅速得到开发者和企业的追捧。据说,2011 年的时候,Facebook 大数据平台上运行的作业 90% 都来源于 Hive。
随后,众多 Hadoop 周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到 Hadoop 平台的 Sqoop;针对大规模日志进行分布式收集、聚合和传输的 Flume;MapReduce 工作流调度引擎 Oozie 等。
在 Hadoop 早期,MapReduce 既是一个执行引擎,又是一个资源调度框架,服务器集群的资源调度管理由 MapReduce 自己完成。但是这样不利于资源复用,也使得 MapReduce 非常臃肿。于是一个新项目启动了,将 MapReduce 执行引擎和资源调度分离开来,这就是 Yarn。2012 年,Yarn 成为一个独立的项目开始运营,随后被各类大数据产品支持,成为大数据平台上最主流的资源调度系统
同样是在 2012 年,UC 伯克利 AMP 实验室(Algorithms、Machine 和 People 的缩写)开发的 Spark 开始崭露头角。当时 AMP 实验室的马铁博士发现使用 MapReduce 进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而 MapReduce 每执行一次 Map 和 Reduce 计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是 MapReduce 主要使用磁盘作为存储介质,而 2012 年的时候,内存已经突破容量和成本限制,成为数据运行过程中主要的存储介质。Spark 一经推出,立即受到业界的追捧,并逐步替代 MapReduce 在企业应用中的地位。
一般说来,像 MapReduce、Spark 这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算
而在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有 Storm、Flink、Spark Streaming 等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算。
在典型的大数据的业务场景下,数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像 Flink 这样的计算引擎,可以同时支持流式计算和批处理计算。
除了大数据批处理和流处理,NoSQL 系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。 NoSQL 曾经在 2011 年左右非常火爆,涌现出 HBase、Cassandra 等许多优秀的产品,其中 HBase 是从 Hadoop 中分离出来的、基于 HDFS 的 NoSQL 系统。
上面我讲的这些基本上都可以归类为大数据引擎或者大数据框架。而大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用 Hive、Spark SQL 等 SQL 引擎完成;数据挖掘与机器学习则有专门的机器学习框架 TensorFlow、Mahout 以及 MLlib 等,内置了主要的机器学习和数据挖掘算法。
此外,大数据要存入分布式文件系统(HDFS),要有序调度 MapReduce 和 Spark 作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。
后出又出现了google新的三辆马车,这三篇Google发表的论文,分别是:
《 FlumeJava:Easy, Efficient Data-Parallel Pipelines 》
《 MillWheel:Fault-Tolerant Stream Processing at Internet Scale 》
《 The Dataflow Model:A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing》
现在又出现了apache beam大统一的情况
从整个看下来,你会发现,每一个新技术的出现都是为了解决旧技术的问题,提高效率的,你也知道它的缺点了,所知道它的大概应用场景等。
网友评论