美文网首页我爱编程
7.2、Convolution NeuralNetwork算法实

7.2、Convolution NeuralNetwork算法实

作者: 遇见百分百 | 来源:发表于2018-05-27 15:17 被阅读0次

    Feature Maps:

    20个feature maps

    pooling layer:作为图像压缩,将图像信息缩小

    3层

    隐藏层: 100个神经元

    训练60个epochs

    学习率 = 0.1

    mini-batch size: 10

    >>>import network3

    >>>from network3 import Network

    >>>from network3 import ConvPoolLayer,FullyConnectedLayer,SoftmaxLayer

    >>>training_data,validation_data,test_data=network3.load_data_shared()

    >>>mini_batch_size=10

    >>>net = Network([FullyConnectedLayer(n_in=784,n_out=100),

                                    SoftmaxLayer(n_in=100,n_out=10)],mini_batch_size)

    >>>net.SGD(training_data,60,mini_batch_size,0.1,validation_data,test_data)

    结果: 97.8 accuracy 

    这次: 没有regularization, 上次有

    这次: softmax 上次: sigmoid + cross-entropy

    加入convolution层:

    >>>net=Network(

    [ConvPoolLayer(image_shape=(mini_batch_size,1,28,28),

            filter_shape=(20,1,5,5),

            poolsize(2,2)),

    FullyConnectedLayer(n_in=20*12*12,n_out=100),

    SoftmaxLayer(n_in=100,n_out=10)],mini_batch_size)

    >>>net.SGD(training_data,60,mini_batch_size,0.1,validation_data,test_data)

    准确率: 98.78 比上次有显著提高

    再加入一层convolution (共两层):

    >>>net=Network(

    [ConvPoolLayer(image_shape=(mini_batch_size,1,28,28),

    filter_shape=(20,1,5,5),

    poolsize=(2,2)),

    ConvPoolLayer(image_shape=(mini_batch_size,20,12,12),

    filter_shape=(40,20,5,5),

    poolsize=(2,2)),

    FullyConnectedLayer(n_in=40*4*4,n_out=100),

    SoftmaxLayer(n_in=100,n_out=10)],mini_batch_size)

    >>>net.SGD(training_data,60,mini_batch_size,0.1,validation_data,test_data)

    准确率: 99.06% (再一次刷新)

    用Rectified Linear Units代替sigmoid:

    f(z) = max(0, z)

    >>>net=Network(

    [ConvPoolLayer(image_shape=(mini_batch_size,1,28,28),

    filter_shape=(20,1,5,5),

    poolsize=(2,2),

    activation_fn=ReLU),

    ConvPoolLayer(image_shape=(mini_batch_size,20,12,12),

    filter_shape=(40,20,5,5),

    poolsize=(2,2),activation_fn=ReLU),

    FullyConnectedLayer(n_in=40*4*4,n_out=100,activation_fn=ReLU),

    SoftmaxLayer(n_in=100,n_out=10)],

    mini_batch_size)

    >>>net.SGD(training_data,60,mini_batch_size,0.03,validation_data,test_data,lmbda=0.1)

    准确率: 99.23 比之前用sigmoid函数的99.06%稍有提高

    扩大训练集: 每个图像向上,下,左,右移动一个像素

    总训练集: 50,000 * 5 = 250,000

    $ python expand_mnist.py

    >>>expanded_training_data,_,_=network3.load_data_shared("../data/mnist_expanded.pkl.gz")

    >>>net=Network([ConvPoolLayer(image_shape=(mini_batch_size,1,28,28),

    filter_shape=(20,1,5,5),

    poolsize=(2,2),

    activation_fn=ReLU),

    ConvPoolLayer(image_shape=(mini_batch_size,20,12,12),

    filter_shape=(40,20,5,5),

    poolsize=(2,2),activation_fn=ReLU),

    FullyConnectedLayer(n_in=40*4*4,n_out=100,activation_fn=ReLU),

    SoftmaxLayer(n_in=100,n_out=10)],mini_batch_size)

    >>>net.SGD(expanded_training_data,60,mini_batch_size,0.03,validation_data,test_data,lmbda=0.1)

     结果: 99.37%

    加入一个100个神经元的隐藏层在fully-connected层:

    >>>net=Network([

    ConvPoolLayer(image_shape=(mini_batch_size,1,28,28),

    filter_shape=(20,1,5,5),

    poolsize=(2,2),

    activation_fn=ReLU),

    ConvPoolLayer(image_shape=(mini_batch_size,20,12,12),

    filter_shape=(40,20,5,5),

    poolsize=(2,2),

    activation_fn=ReLU),

    FullyConnectedLayer(n_in=40*4*4,n_out=100,activation_fn=ReLU),

    FullyConnectedLayer(n_in=100,n_out=100,activation_fn=ReLU),

    SoftmaxLayer(n_in=100,n_out=10)],mini_batch_size)

    >>>net.SGD(expanded_training_data,60,mini_batch_size,0.03,validation_data,test_data,lmbda=0.1)

    结果: 99.43%, 并没有大的提高有可能overfit

    加上dropout到最后一个fully-connected层:

    >>>expanded_training_data,_,_=network3.load_data_shared("../data/mnist_expanded.pkl.gz")

    >>>net=Network([

    ConvPoolLayer(image_shape=(mini_batch_size,1,28,28),

    filter_shape=(20,1,5,5),

    poolsize=(2,2),activation_fn=ReLU),

    ConvPoolLayer(image_shape=(mini_batch_size,20,12,12),

    filter_shape=(40,20,5,5),poolsize=(2,2),activation_fn=ReLU),

    FullyConnectedLayer(n_in=40*4*4,n_out=1000,activation_fn=ReLU,p_dropout=0.5),

    FullyConnectedLayer(n_in=1000,n_out=1000,activation_fn=ReLU,p_dropout=0.5),

    SoftmaxLayer(n_in=1000,n_out=10,p_dropout=0.5)],mini_batch_size)

    >>>net.SGD(expanded_training_data,40,mini_batch_size,0.03,validation_data,test_data)

    结果: 99.60% 显著提高

    epochs: 减少到了40

    隐藏层有 1000 个神经元

    Ensemble of network: 训练多个神经网络, 投票决定结果, 有时会提高

    误识别的图像:

    为何只对最后一层用dropout

    CNN本身的convolution层对于overfitting有防止作用: 共享的权重造成convolution filter强迫对于整个图像进行学习

    为什么可以克服深度学习里面的一些困难?

    用CNN大大减少了参数数量

    用dropout减少了overfitting

    用Rectified Linear Units代替了sigmoid,避免了overfitting,不同层学习率差别大的问题

    用GPU计算更快, 每次更新较少, 但是可以训练很多次

    目前的深度神经网络有多深? (多少层)?

    最多有20多层。

    相关文章

      网友评论

        本文标题:7.2、Convolution NeuralNetwork算法实

        本文链接:https://www.haomeiwen.com/subject/uprbjftx.html