美文网首页
计算keras-yolo v3 结果的mAP值

计算keras-yolo v3 结果的mAP值

作者: Y_166d | 来源:发表于2019-08-05 22:47 被阅读0次

keras-yolo v3 源码:https://github.com/qqwweee/keras-yolo3
mAP计算代码:https://github.com/Cartucho/mAP
参考:https://blog.csdn.net/weixin_38106878/article/details/89199961

最近用做目标检测用了yolo算法,因为对keras
比较熟悉就用了keras版本的,但是训练完后发现源码没有可以评估训练结果的代码,于是就找资料然后自己对结果的mAP进行计算。(要计算precision、recall的可以直接在mAP代码改)
以下方法比较麻瓜的地方是要自己将待测试的图片(测试集)放在一个文件夹里,包括标注信息也是。

1 准备测试的图片

下载完mAP的源码后,在该项目的目录的input下创建两个文件夹,images-optional和ground-truth,分别放置原图和测试图对应的xml文件

--mAP
  |
  --input
    |
    --images-optional          放测试图片
    --ground-truth             放图片的xml文件
    --detection-results        放测试结果

2 测试图片的标签格式转换(XML转换为txt格式)

本次测试中,数据格式是的VOC格式,有现成的代码可用,无需做修改,打开终端,进入子目录、运行代码:

cd mAP/scripts/extra
python convert_gt_xml.py

代码运行完后,测试数据的GT坐标会保存在对应的txt文件内,XML文件会另存在目录中的backup文件夹内;

3 利用yolo结果测试图片

在yolo项目的根目录下,与yolo_video.py在同级目录;
修改路径后运行以下yolo_detect.py并生成测试结果保存在指定目录;

路径:
24行是模型路径
186行是测试图片路径
193行是测试结果.txt文件保存路径

python yolo_detect.py

详细的yolo_detect.py代码在文末
(批量测试图片)

测试完后将测试结果(.txt)保存在mAP项目的input/detection-results文件夹下

4 计算mAP

在mAP项目下运行:

python main.py

测试结果会自动保存在result目录下
但是如果是在服务器运行没有图形界面的话,要在后面加--na --np
不然会报: cannot connect to X server的错误。

附 yolo_detect.py 代码如下:

# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""

import colorsys
import os
import sys 
from timeit import default_timer as timer

import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw

from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model

class YOLO(object):
    _defaults = {
        "model_path": 'logs/000/trained_weights.h5', ##训练好的模型的路径
        "anchors_path": 'model_data/yolo_anchors.txt',
        "classes_path": 'model_data/voc_classes.txt',
        "score" : 0.3,
        "iou" : 0.45,
        "model_image_size" : (416, 416),
        "gpu_num" : 0
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults) # set up default values
        self.__dict__.update(kwargs) # and update with user overrides
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.sess = K.get_session()
        self.boxes, self.scores, self.classes = self.generate()

    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    def _get_anchors(self):
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape(-1, 2)

    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes

    def detect_image(self, image):
        start = timer()

        if self.model_image_size != (None, None):
            assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
            boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
        else:
            new_image_size = (image.width - (image.width % 32),
                              image.height - (image.height % 32))
            boxed_image = letterbox_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')

        print(image_data.shape)
        image_data /= 255.
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })

        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))

        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                    size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 300

        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)

            top, left, bottom, right = box
            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
            print(label, (left, top), (right, bottom))
            #new_f=open("/home/shan/xws/pro/keras-yolo3/detection-results/"+tmp_file.replace(".jpg", ".txt"), "a")
            new_f.write("%s %s %s %s %s\n" %  (label, left, top, right, bottom))
            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for i in range(thickness):
                draw.rectangle(
                    [left + i, top + i, right - i, bottom - i],
                    outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin), tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
            del draw

        end = timer()
        print(end - start)
        return image

    def close_session(self):
        self.sess.close()

if __name__ == '__main__':
    # yolo=YOLO()
    # path = '1.jpg'
    # try:
    #     image = Image.open(path)
    # except:
    #     print('Open Error! Try again!')
    # else:
    #     r_image = yolo.detect_image(image)
    #     r_image.show()
    # yolo.close_session()
    #strat1=timer()
    dirname="test/" ##该目录为测试照片的存储路径,每次测试照片的数量可以自己设定
    path=os.path.join(dirname)
    pic_list=os.listdir(path) 
    count=0
    yolo=YOLO()
    for filename in pic_list:
        tmp_file=pic_list[count]
        new_f=open("result/"+tmp_file.replace(".jpg", ".txt"), "a")  #预测坐标生成txt文件保存的路径
        abs_path=path+pic_list[count]
        image = Image.open(abs_path)
        r_image = yolo.detect_image(image)
        count=count+1
    #end1=timer()
    print(count)
    yolo.close_session()

相关文章

  • 计算keras-yolo v3 结果的mAP值

    keras-yolo v3 源码:https://github.com/qqwweee/keras-yolo3mA...

  • 数组中的值重复出现的次数

    问题描述:计算数组的值重复出现的次数 使用Map去统计,key值为数组中的值,value为值出现的次数。 输出结果...

  • leetcode两数之和

    题目描述 解题思路 借助哈希表,将数组元素的值和索引传入map的同时,计算target-nums[i],判断结果是...

  • 免费天气预报接口

    http://api.map.baidu.com/telematics/v3/weather?location=%...

  • 【HDU 1286】找新朋友

    找新朋友(题目链接) 思路 直接暴力,TLE 使用map存储中间计算值优化,TLE 使用欧拉函数计算,AC 代码

  • [10,20,30].map(parseInt)返回结果解析

    话不多说,直接上结果:[10, NaN, NaN] 剖析使用的方法和参数: map的参数和返回值 map() 方法...

  • JAVA CAS无锁算法

    核心原理:先比较预期计算结果和当前计算结果,如果相同,则将当前值替换为预期计算结果(或当前计算结果),否则重新计算...

  • Hive 数据倾斜

    现象:任务卡在map 100% reduce 99%,分布式计算时, 优化目标:使map的结果更均匀的分布到red...

  • useMap-管理map的钩子

    map和Object的区别和相同 map"值"-"值" 1 .map {(1, “微笑”), (2, “哭泣”)...

  • Transformation转换算子之Value类型

    定义SparkContext Map算子 运行结果;以为是分区计算,所以结果是无序的。 查看每个分区处理哪些数据 ...

网友评论

      本文标题:计算keras-yolo v3 结果的mAP值

      本文链接:https://www.haomeiwen.com/subject/uqnvdctx.html