一次完成多个操作
- tf.group
tf.group(
*inputs,
**kwargs
)
*inputs: 0或多个张量;
name: 操作名称;
- tf.control_dependencies(control_inputs)
control_inputs: 一个包括操作和张量对象的列表;
使用 with 关键字可以执行某些操作的依赖关系。
None 可以消除依赖。
with g.control_dependencies([a, b, c]):
# `d` and `e` will only run after `a`, `b`, and `c` have executed.
d = ...
e = ...
with g.control_dependencies([a, b]):
# Ops constructed here run after `a` and `b`.
with g.control_dependencies(None):
# Ops constructed here run normally, not waiting for either `a` or `b`.
with g.control_dependencies([c, d]):
# Ops constructed here run after `c` and `d`, also not waiting
# for either `a` or `b`.
- tf.no_op(name=None)
不执行任何操作,仅用于占位
- 示例
#以下代码等价
train_op = tf.group(train_step, variables_averages_op)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
class tf.train.Saver
- save
save(
sess,
save_path,
global_step=None,
latest_filename=None,
meta_graph_suffix='meta',
write_meta_graph=True,
write_state=True,
strip_default_attrs=False
)
sess: 要保存的会话;
save_path: 保存路径;
global_step: 文件名附加信息;
- 示例
saver = tf.train.Saver()
with tf.Session() as sess:
...
saver.save(
sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME),
global_step=global_step)
- restore
restore(
sess,
save_path
)
tf.app.run
- 用法
tf.app.run(
main=None,
argv=None
)
- 示例
#执行程序中的 main 方法 和 argv 列表中的内容
def main():
...
if __name__ == '__main__':
tf.app.run()
tf.train.get_checkpoint_state
Returns CheckpointState proto from the "checkpoint" file.
If the "checkpoint" file contains a valid CheckpointState proto, returns it.
tf.train.get_checkpoint_state(
checkpoint_dir,
latest_filename=None
)
tf.nn.conv2d
- 用法
tf.nn.conv2d(
input,
filter,
strides,
padding,
use_cudnn_on_gpu=True,
data_format='NHWC',
dilations=[1, 1, 1, 1],
name=None
)
input: 输入,4-D张量;
filter: 卷积层的权重,4-D张量[filter_height, filter_width, in_channels, out_channels];
strides: 步幅,1-D张量,长度4;
padding: 填充类型,"SAME", "VALID";
data_format: 指定数据格式,默认为[批次,高度,宽度,通道];
dilations: 膨胀系数;
- 示例
conv = tf.nn.conv2d(
input, filter_weight, strides=[1, 1, 1, 1], padding='SAME')
tf.nn.bias_add
- 用法
tf.nn.bias_add(
value,
bias,
data_format=None,
name=None
)
value: 一个张量;
bias: 1-D张量;
data_format: 支持"NHWC","NCHW";
- 示例
biases = tf.get_variable(
"biases", [16], initializer=tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
网友评论