美文网首页
MySQL -- 锁机制

MySQL -- 锁机制

作者: 米_8d62 | 来源:发表于2020-02-16 15:05 被阅读0次

    表锁 行锁 页锁

    表锁:
    表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点:实现逻辑非常简单,带来的系统负面影响最小。获取锁和释放锁的速度很快。由于表级锁一次会将整个表锁定,所以可以很好的避免困扰我们的死锁问题。
    缺点:锁定颗粒度大所带来最大的负面影响就是出现锁定资源争用的概率也会最高,致使并大度大打折扣。
    使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。

    行锁:
    行级锁定最大的特点就是锁定对象的颗粒度很小,也是目前各大数据库管理软件所实现的锁定颗粒度最小的。由于锁定颗粒度很小,所以发生锁定资源争用的概率也最小,能够给予应用程序尽可能大的并发处理能力而提高一些需要高并发应用系统的整体性能。
    优势:在并发处理能力较强
    弊端:由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。
    使用行级锁定的主要是InnoDB存储引擎。

    页锁
    页级锁定是MySQL中比较独特的一种锁定级别,在其他数据库管理软件中也并不是太常见。
    特点:1.锁定颗粒度介于行级锁定与表级锁之间,
    2.获取锁定所需要的资源开销,
    以及所能提供的并发处理能力也同样是介于上面二者之间。

    另外,页级锁定和行级锁定一样,会发生死锁。
    在数据库实现资源锁定的过程中,随着锁定资源颗粒度的减小,锁定相同数据量的数据所需要消耗的内存数量是越来越多的,实现算法也会越来越复杂。不过,随着锁定资源颗粒度的减小,应用程序的访问请求遇到锁等待的可能性也会随之降低,系统整体并发度也随之提升。
    使用页级锁定的主要是BerkeleyDB存储引擎。

    总体归纳如下

    表锁 行锁 页锁
    开销 两者之间
    加锁 两者之间
    死锁 不会
    并发度 一般

    表锁详解

    mysql的MyISAM完全使用表锁,InnoDB没有使用索引条件检索数据时也是采用表锁的形式。

    表锁分为表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。
    对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;(读阻塞写)
    对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作;(写阻塞读写)
    MyISAM表的读操作与写操作之间,以及写操作之间是串行的。当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。

    MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。

    行锁详解

    行锁分为:共享锁(S),排他锁(X),意向共享锁(IS)和意向排他锁(IX)
    当对某个资源加锁时,如果

    • 有共享锁,可以再加一个共享锁,不过不能加排他锁。
    • 有排它锁,就在表上添加意向共享锁或意向排他锁。
      意向共享锁可以同时并存多个,但是意向排他锁同时只能有一个存在。意向锁是InnoDB自动加的,不需用户干预。

    共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE
    排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE

    意向锁是InnoDB自动加的,不需用户干预。
    UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;

    间隙锁(Next-Key锁)(键值在条件范围内但并不存在的记录)
    当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;
    对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。

    select * from emp where empid > 100 for update;
    一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。

    InnoDB使用间隙锁的目的:
    (1)防止幻读,以满足相关隔离级别的要求。对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读;
    (2)为了满足其恢复和复制的需要。
    很显然,在使用范围条件检索并锁定记录时,即使某些不存在的键值也会被无辜的锁定,而造成在锁定的时候无法插入锁定键值范围内的任何数据。在某些场景下这可能会对性能造成很大的危害。

    死锁原因

    在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,当两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。

    如何解决

    (1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序(按顺序持有锁,不易冲突)来访问表,这样可以大大降低产生死锁的机会。
    (2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。
    (3)在事务中,如果要更新(不管先后,直接申请排他锁)记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。
    (4)在REPEATABLE-READ(可重复读)隔离级别下,如果两个线程同时对相同条件记录用SELECT…FOR UPDATE加排他锁,在没有符合该条件记录情况下(即不存在的记录),两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题。
    (5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT…FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁。这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。

    InnoDB行锁优化建议

    • 1 要想合理利用InnoDB的行级锁定,做到扬长避短,我们必须做好以下工作:
      a)尽可能让所有的数据检索都通过索引来完成,从而避免InnoDB因为无法通过索引键加锁而升级为表级锁定;
      b)合理设计索引,让InnoDB在索引键上面加锁的时候尽可能准确,尽可能的缩小锁定范围,避免造成不必要的锁定而影响其他Query的执行;
      c)尽可能减少基于范围的数据检索过滤条件,避免因为间隙锁带来的负面影响而锁定了不该锁定的记录;
      d)尽量控制事务的大小,减少锁定的资源量和锁定时间长度;
      e)在业务环境允许的情况下,尽量使用较低级别的事务隔离,以减少MySQL因为实现事务隔离级别所带来的附加成本。
    • 2 由于InnoDB的行级锁定和事务性,所以肯定会产生死锁,下面是一些比较常用的减少死锁产生概率的小建议:
      a)类似业务模块中,尽可能按照相同的访问顺序来访问,防止产生死锁;
      b)在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;
      c)对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率。
    • 3 可以通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况:
      show status like 'InnoDB_row_lock%';

    InnoDB_row_lock_current_waits:当前正在等待锁定的数量;
    InnoDB_row_lock_time:从系统启动到现在锁定总时间长度;
    InnoDB_row_lock_time_avg:每次等待所花平均时间;
    InnoDB_row_lock_time_max:从系统启动到现在等待最长的一次所花的时间;
    InnoDB_row_lock_waits:系统启动后到现在总共等待的次数;
    对于这5个状态变量,比较重要的主要是InnoDB_row_lock_time_avg(等待平均时长),InnoDB_row_lock_waits(等待总次数)以及InnoDB_row_lock_time(等待总时长)这三项。尤其是当等待次数很高,而且每次等待时长也不小的时候,我们就需要分析系统中为什么会有如此多的等待,然后根据分析结果着手指定优化计划。

    如果发现锁争用比较严重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,还可以通过设置InnoDB Monitors 来进一步观察发生锁冲突的表、数据行等,并分析锁争用的原因。
    锁冲突的表、数据行等,并分析锁争用的原因。具体方法如下:
    mysql> create table InnoDB_monitor(a INT) engine=InnoDB;

    然后就可以用下面的语句来进行查看:

    mysql> show engine InnoDB status;

    监视器可以通过发出下列语句来停止查看:

    mysql> drop table InnoDB_monitor;

    设置监视器后,会有详细的当前锁等待的信息,包括表名、锁类型、锁定记录的情况等,便于进行进一步的分析和问题的确定。为什么要先创建一个叫InnoDB_monitor的表呢?因为创建该表实际上就是告诉InnoDB我们开始要监控他的细节状态了,然后InnoDB就会将比较详细的事务以及锁定信息记录进入MySQL的errorlog中,以便我们后面做进一步分析使用。打开监视器以后,默认情况下每15秒会向日志中记录监控的内容,如果长时间打开会导致.err文件变得非常的巨大,所以用户在确认问题原因之后,要记得删除监控表以关闭监视器,或者通过使用“–console”选项来启动服务器以关闭写日志文件。

    引用

    本文只是本人平时方便查看,原文引用链接:https://yq.aliyun.com/articles/603991

    相关文章

      网友评论

          本文标题:MySQL -- 锁机制

          本文链接:https://www.haomeiwen.com/subject/uuhjfhtx.html