美文网首页我爱编程
GTX1070+ubuntu1610+tensorflow-gp

GTX1070+ubuntu1610+tensorflow-gp

作者: petrowu | 来源:发表于2017-03-31 15:32 被阅读0次

    #系统启动时提示nouveauerror: unkown chipset

    # nouveau无法识别GTX1080

    -禁用nouveau

    vi /etc/modprobe.d/blacklist.conf

    #添加:

    blacklist nouveau

    sudo update-initramfs -u

    sudo reboot

    #准备系统环境

    sudo apt-get install build-essential wget

    #安装gcc g++ 4.8

    sudo apt-get install gcc-4.8gcc-4.8-multilib g++-4.8 g++-4.8-multilib

    sudo update-alternatives --install/usr/bin/gcc gcc /usr/bin/gcc-5 60

    sudo update-alternatives --install/usr/bin/gcc gcc /usr/bin/gcc-4.8 50

    sudo update-alternatives --install/usr/bin/g++ g++ /usr/bin/g++-5 60

    sudo update-alternatives --install/usr/bin/g++ g++ /usr/bin/g++-4.8 50

    #切换gcc g++版本

    sudo update-alternatives --config gcc

    sudo update-alternatives --config g++

    #移除gcc g++ 4.8

    # sudo update-alternatives --remove gcc/usr/bin/gcc-4.8

    # sudo update-alternatives --remove g++/usr/bin/g++-4.8

    # CUDA 8.0RC

    #https://developer.nvidia.com/cuda-release-candidate-download

    #安装cuda toolkit

    #切换到gcc-4.8

    sudo dpkg -icuda-repo-ubuntu1604-8-0-rc_8.0.27-1_amd64.deb

    sudo apt-get update

    sudo apt-get install cuda

    #配置环境变量

    echo "exportCUDA_HOME=/usr/local/cuda" >> ~/.bashrc

    echo "exportPATH=/usr/local/cuda/bin:$PATH" >> ~/.bashrc

    echo "exportLD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH" >> ~/.bashrc

    #安装cuDNN

    tar -xf cudnn-8.0-linux-x64-v5.0-ga.tgz

    sudo cp -f cuda/lib64/*.*/usr/local/cuda/lib64/

    sudo cp -f cuda/include/*.*/usr/local/cuda/include/

    #注意:GeForce GTX1080 Developers must re-install the latest driver from www.nvidia.com/driversafter installing any of these CUDA Toolkits.

    #注意:gcc-4.8无法编译nvidia driver

    #注意:安装驱动时需要允许dkms

    #切换到gcc-5

    sudo sh NVIDIA-Linux-x86_64-*.run

    #卸载驱动:sudonvidia-uninstall

    #测试

    cd/usr/local/cuda/samples/1_Utilities/deviceQuery

    sudo make

    ./deviceQuery

    # modprobe: ERROR: could not insert'nvidia_361_uvm': Invalid argument

    #这是因为cuda8.0自带了361版本的nvidia driver,需要将其卸载

    sudo apt-getremove nvidia-361

    The following packages will be REMOVED:

    cuda cuda-8-0 cuda-demo-suite-8-0cuda-drivers cuda-runtime-8-0 nvidia-361 nvidia-361-dev

    0 upgraded, 0 newly installed, 7 to removeand 76 not upgraded.

    After this operation, 312 MB disk spacewill be freed.

    Do you want to

    continue? [Y/n] y(别怕,没问题)

    sudo reboot(重启显示有问题,可能无法进入桌面)

    Crtl+Alt+F1

    sudo apt-add-repository ppa:graphics-drivers/ppa -y

    sudo apt update

    sudo apt install nvidia-367 nvidia-settingsnvidia-prime

    sudo reboot

    现在能正常进入桌面了

    # Tensorflow 0.9.0 build from source

    #安装bazel

    sudo apt-get install openjdk-8-jdk

    echo "debhttp://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee/etc/apt/sources.list.d/bazel.list

    curlhttps://storage.googleapis.com/bazel-apt/doc/apt-key.pub.gpg | sudo apt-key add-

    sudo apt-get update

    sudo apt-get install bazel

    #编译tensorflow

    sudo apt-get install python-numpy swigpython-dev

    mkdir ~/github && cd ~/github

    git clone --recurse-submoduleshttps://github.com/tensorflow/tensorflow

    cd ~/github/tensorflow &&./configure

    ---------------------------------------

    Please specify the location of python.[Default is /usr/bin/python]:

    Do you wish to build TensorFlow with GoogleCloud Platform support? [y/N] n

    No Google Cloud Platform support will beenabled for TensorFlow

    Do you wish to build TensorFlow with GPUsupport? [y/N] y

    GPU support will be enabled for TensorFlow

    Please specify which gcc nvcc should use asthe host compiler. [Default is /usr/bin/gcc]:

    Please specify the Cuda SDK version youwant to use, e.g. 7.0. [Leave empty to use system default]: 8.0

    Please specify the location where CUDA 8.0toolkit is installed. Refer to README.md for more details. [Default is/usr/local/cuda]:

    Please specify the Cudnn version you wantto use. [Leave empty to use system default]: 5 (not 5.0)

    Please specify the location where cuDNN 5library is installed. Refer to README.md for more details. [Default is/usr/local/cuda]:

    Please specify a list of comma-separatedCuda compute capabilities you want to build with.

    You can find the compute capability of yourdevice at: https://developer.nvidia.com/cuda-gpus.

    Please note that each additional computecapability significantly increases your build time and binary size.

    [Default is: "3.5,5.2"]:

    Setting up Cuda include

    Setting up Cuda lib64

    Setting up Cuda bin

    Setting up Cuda nvvm

    Setting up CUPTI include

    Setting up CUPTI lib64

    Configuration finished

    ---------------------------------------

    bazel build -c opt --config=cuda//tensorflow/tools/pip_package:build_pip_package

    bazel-bin/tensorflow/tools/pip_package/build_pip_package/tmp/tensorflow_pkg

    sudo pip install/tmp/tensorflow_pkg/tensorflow-…

    #测试

    python -c "import tensorflow"

    # ImportError: cannot import name

    pywrap_tensorflow:需要重启

    sudo reboot

    # Theano & keras

    sudo apt-get install python-numpypython-scipy python-dev python-pip python-nose libopenblas-dev git

    sudo pip install Theano

    sudo pip install keras

    #配置Theano

    echo "[global]" > ~/.theanorc

    echo "floatX = float32" >>~/.theanorc

    echo "device = gpu0" >>~/.theanorc

    echo "[nvcc]" >>~/.theanorc

    echo "fastmath = True" >>~/.theanorc

    #测试

    python -c "import keras"

    # matplotlib

    sudo apt-get build-dep python-matplotlib

    # E: You must put some 'source' URIs inyour sources.list

    sudo vi /etc/apt/sources.list

    #去掉所有deb-src前面的#号

    sudo apt-get update

    sudo pip install matplotlib

    # h5py

    sudo apt-get install libhdf5-dev

    sudo apt-get install cython

    sudo pip install h5py

    # Docker

    # Update apt sources

    sudo apt-get update

    sudo apt-get install apt-transport-httpsca-certificates

    sudo apt-key adv --keyserverhkp://p80.pool.sks-keyservers.net:80 --recv-keys58118E89F3A912897C070ADBF76221572C52609D

    sudo vi /etc/apt/sources.list.d/docker.list

    #添加(14.04):

    deb https://apt.dockerproject.org/repoubuntu-trusty main

    #添加(16.04):

    deb https://apt.dockerproject.org/repoubuntu-xenial main

    sudo apt-get update

    sudo apt-get install docker-engine

    sudo service docker start

    # add user group

    sudo groupadd docker

    sudo usermod -aG docker [your username]

    相关文章

      网友评论

        本文标题:GTX1070+ubuntu1610+tensorflow-gp

        本文链接:https://www.haomeiwen.com/subject/uvdvottx.html